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The combination of linear and dependent types makes for a pleasant programming experience when
writing quantum programs: linearity enforces the no-cloning principle throughout the code, and
dependency allows classically parameterised families of circuits to be described and composed in a
type-safe manner.

Proto-Quipper-D is a language with both of these features, but lacks one further selling point
of dependent types: the ability to formally verify properties of the program by writing proofs in the
same language, as can be done in (non-linear) languages such as Coq and Agda.

We suggest that a bunched dependent type theory (previously described in the thesis of the au-
thor) could fill this gap. This is an extension of ordinary non-linear Martin-Löf dependent type
theory with linear type formers, capable of describing quantum circuits using its linear type formers
and writing formal proofs concerning their properties using the non-linear type formers.

After summarising the rules of the bunched type theory, we sketch a translation of the non-
dependent Proto-Quipper-M into the bunched theory and show that it can be used to verify a simple
quantum circuit. We expect the dependent Proto-Quipper-D to support a similar translation, which
would give us the power of dependent types both when constructing circuits and when verifying
them.

1 Introduction

The Quipper family of circuit description languages originates as an embedded language in Haskell [3, 4].
Haskell lacks linear types, and so there are no compile-time guarantees that the code you have written
describes a circuit that obeys the no-cloning principle: nothing prevents you from using a the same qubit
or wire in multiple places. To rectify this, the Proto-Quipper [17, 18] line of work describes standalone
type theories based on linear types that enforce these restrictions.

Proto-Quipper has since been extended to include linear dependent types in Proto-Quipper-D [1, 2],
increasing the type-safety of the language. For example, [1, §3.3] defines families of circuits, one for
each of number of qubits n. The type system can then guarantee that, for any input n : N, the output
circuit is indeed a circuit on n qubits.

Proto-Quipper-D lacks one type former that many non-linear dependent type theories include: Id-
types, i.e. identity types/equality types. These internalise the notion of equality as a type, and allow us
to reason about the equality of terms without leaving the theory we are working in. This has been put
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to spectacular use in the formal verification of program properties and the formalisation of mathematics,
using proof assistants such as Coq, Agda and Lean.

Our goal is to use Id-types to formally verify quantum circuits described using a language in the
Quipper family. This means using a type theory that integrates linear types and Id types. Unfortunately
Id-types are not something that can simply be thrown into Proto-Quipper-D: the semantic interpretation
of Id-types intrinsically requires a diagonal morphism, both in the interpretation of the type itself and of
the reflexivity term. For ‘parameter types’ P, it is likely some version of the standard rules for Id-types
are be sound, because such types can be equipped with a diagonal morphism P → P⊗P. But this does
not help with our original problem: verifying properties of a circuit will certainly involve equalities of
the linear terms defining the circuit.

One type theory that can combine linearity and ordinary Id-types is the bunched dependent type
theory of [14]. This is an extension of ordinary Martin-Löf [5] type theory to include linear type formers.
Importantly, the rules for the ordinary non-linear type formers are imported unchanged, so in particular,
Id-types work exactly as we are used to.

After summarising the rules of the bunched type theory (Section 2), we describe a translation from
a fragment of Proto-Quipper-M into it (Section 3). The specific fragment we intend to translate is given
in Figure 1. We demonstrate the possibility of using this for the verification of quantum programs by
translating a (very) simple circuit and verifying one of its properties (Section 4).
Remark 1.1. It is not surprising that Proto-Quipper and this bunched theory are related: their intended
semantics are quite similar. Proto-Quipper-M and Proto-Quipper-D have semantics in set-indexed fami-
lies of objects of a monoidal category where the category is required to have certain additional structure;
more generally, in fibrations of a closed symmetric monoidal category (representing the linear state) over
a locally cartesian closed category (representing the non-linear parameters). The bunched type theory
has semantics in a similar setting, but is slightly more restricted: each of the fibers of the fibration must
have a zero object1, and the domain of the fibration must itself also be a locally cartesian closed category.
Remark 1.2. The most comparable work on formal verification for a quantum circuit language is
QWIRE [12, 10, 13], but there are some important differences. QWIRE is domain specific language
embedded in Coq, with quantum ‘wire types’ and circuits described as elements of an inductive data
type. The dependent types (including Id-types) of the host language can then be used to verify properties
of these circuits. There is a strict separation between the terms and types of the host language and the
constructions in the circuit language, making it more difficult to manipulate parameters and state together
within a program, and the fixed set of ‘wire types’ forecloses the ability to include dependent types or
quantum data types in the linear language.
Remark 1.3. There are some natural avenues for further exploration. In a separate article [6], we discuss
how aspects of state-preparation and measurement arise naturally out of the interplay between the linear
and non-linear type formers of the bunched theory. And in this note, as in Proto-Quipper, we postulate the
type Qubit and the gates of interest which remain uninterpreted other than as syntactic building blocks of
circuits. One of the benefits of the bunched dependent type theory is its compatibility with homotopy type
theory, which is capable of directly describing some of the mathematical structures underlying quantum
mechanics [7, 11]. This could lead to direct interpretations of Quipper circuits as operations on these
mathematical structures, and so one could, for example, extract the unitary operator corresponding to a
circuit.

The ♮ modality was originally described in joint work with Eric Finster and Dan Licata [15], and the
further extension to linear types in work with Dan Licata [16].

1In the notation of [2], we require the functor q to be also left adjoint to the fibration ♯, not just right adjoint.
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2 Bunched Dependent Type Theory

This introduction to bunched dependent type theory will necessarily be brief and incomplete, the full
details are present in [14]. Our bunched dependent type theory is an extension of Martin-Löf type theory,
including ordinary Π-, Σ- and Id-types. This sidesteps the question of what ‘linear identity types’ ought
to be: identity types with their ordinary rules are enough for our purposes.

Like Proto-Quipper-D, the bunched type theory includes dependent ⊗- and ⊸-types, but because
the source of our translation will be non-dependent, we only need their non-dependent versions in the
bunched theory. The target still contains fully dependent versions of ordinary Π-, Σ- and Id-types, how-
ever.

The way the bunched dependent theory extends MLTT is similar to the way the αλ -calculus extends
the ordinary λ -calculus, as part of work on bunched logics [9, 8], hence the name. In bunched implication
there are two binary context-forming operations, an ordinary cartesian comma and a linear monoidal
product. These notions of product can be combined in arbitrary ways, giving contexts an inhrently tree-
like structure.

Palettes. In our theory, we separate the ‘bunched’ shape of the context from the typing information of
the variables in it. A generic context Φ | Γ ctx has two pieces, a palette Φ describing the tree structure of
the context, and then a more typical context Γ of typed variables. Each variable is labelled with a colour
from the palette, which places the data of that variable at the corresponding node of the tree.

On its own, a palette Φ describes a particular kind of tree, where each node represents either a
cartesian product × or a tensor product ⊗. Palettes have no semantic interpretation on their own; they
describe a shape that is later filled by the variables of the context.

Any ×-node can be given a label. We call these labels colours, and write Φ ⊢ c colour for the
judgement picking out a single label. Each variable in the context will be assigned one of these labels,
which corresponds to adding that variable as a child of the corresponding × node.

A typical palette may look like as follows: t ≺ (a⊗ b, c⊗ d) palette, so that t represents a ×-node
with two children a⊗b and c⊗d. The former is a ⊗-node with two children a and b, and similarly for the
latter. Palettes can be nested in arbitrary ways. Starting with the palette t≺ a⊗ b palette, we might like
for the a-labelled ×-node to itself contain a ⊗-node, and this would be written t≺ (a≺ p⊗q)⊗b palette.

As well as labels and the binary palette formers, there are two special unary symbols: 1, representing
the terminal object, and ∅, representing the monoidal unit. The formal rules for constructing palettes are
given in the Appendix. To cut down on notation, we write r as a shorthand for r≺ 1.

Context Formation. The colour at the top of the tree (leftmost in the palette) is used to annotate
variables that are currently accessible, so palettes in the context of a term always have a label at the top
level, so are of the form t≺ Φ | Γ ⊢ a : A. The rules for constructing contexts are:

CTX-EMPTY
t≺ Φ palette

t≺ Φ | · ctx

CTX-EXT
t≺ Φ ⊢ c colour

(t≺ Φ)c | Γ
c ⊢ A type

t≺ Φ | Γ,xc : A ctx

CTX-EXT-MARKED
r | Γ ⊢ A type

t≺ Φ | Γ,xr : A ctx

There are two ways to extend a context with a variable: either labelled with a colour from the palette,
or ‘marked’. A ‘colourful’ context extension t ≺ Φ | Γ,x :c A ctx denotes an assumption whose linear
data is accessible, much like the 1 annotations on variables in Proto-Quipper-D [2]. The Φ ⊢ c colour
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label describes how this linear data is combined with the rest of the context: the data is placed in the
×-node labelled c.

The type A assigned to x must be well-formed in the palette (t ≺ Φ)c, which is defined to be the
subpalette rooted at the label c. The context is adjusted appropriately: any variable whose colour label
does not lie under c becomes marked. As a special case of colourful context extension, we have ordinary
context extension using the colour that is at the top of the palette, as in

t≺ Φ | Γ,x :t A.

A ‘marked’ context extension t ≺ Φ | Γ,x :c A ctx denotes an assumption whose linear data is not
accessible; either because it was never accessible to begin with, or because some other part of the deriva-
tion will use that linear data. It corresponds semantically to extending Γ with the underlying indexing set
of A, i.e. ♮A. The c label here does not come from the palette: instead it is bound in this context extension.
When a variable becomes marked, its connection to the ambient palette is completely severed.

The type A in such a context extension must be ‘dull’, i.e. all uses of variables from Γ in A must be
marked uses, and nor can it use any colours form Φ: the palette is cleared to c, using the top colour label
that the extension is annotated with.

Variable Usage. There are three ways a variable can be used.

VAR

t≺ Φ | Γ,xt : A,Γ′ ⊢ x : A

VAR-ROUNDTRIP
t≺ Φ ⊢ c colour

t≺ Φ | Γ,xc : A,Γ′ ⊢ x : A

VAR-MARKED

t≺ Φ | Γ,xc : A,Γ′ ⊢ x : A

First, we have ordinary variable usage via the VAR rule: a colourful variable x :t A may be used if the
colour t of the variable is precisely the label at the top of the palette.

Next, any colourful variable x :c A can be used marked via VAR-ROUNDTRIP regardless of what
colour that variable is labelled with in the context, yielding a term x : A. All the variables uses in the
type A have also become marked. We think of x as the term that represents point of the indexing set
corresponding to x, with the linear information forgotten.

Finally, any variable x :c A that was added to the context via a marked context extension can also be
used marked, with the same syntax as the previous rule, so x : A. Here, A is already a marked type.

We have used various admissible rules in these context and variable rules to make the typing line up,
and we display these rules in the Appendix.

Ordinary Type Formers. Ordinary type formers have their rules essentially unchanged, with every
bound variable given the top colour of the palette as their label. For example,

Π-FORM
t≺ Φ | Γ ⊢ A type

t≺ Φ | Γ,xt : A ⊢ B type

t≺ Φ | Γ ⊢ (x : A)→ B type

Π-INTRO
t≺ Φ | Γ,xt : A ⊢ b : B

t≺ Φ | Γ ⊢ λx.b : (x : A)→ B

Π-ELIM
t≺ Φ | Γ ⊢ f : (x : A)→ B type

t≺ Φ | Γ ⊢ a : A

t≺ Φ | Γ ⊢ f (a) : B[a/x]

and similarly for Σ- and Id-types.



M. Riley 5

The Indexing Set Modality. The first new type constructor is the unary type operator ♮A, which ex-
tracts the underlying indexing set of any type A. The rules are as follows:

♮-FORM

Γ ⊢ A type

Γ ⊢ ♮A type

♮-INTRO

Γ ⊢ a : A

Γ ⊢ a♮ : ♮A

♮-ELIM

Γ ⊢ b : ♮A

Γ ⊢ b♮ : A

Let us refer to a term/type in context Γ, i.e. a term/type all of whose free variables are marked, as
dull. The formation rule says that for any dull type A there is a type ♮A, and for any dull term of a dull
type a : A there is a term a♮ : ♮A. Note that the type A must be assumed to be dull for the type ♮A in the
conclusion to be well-formed. The elimination rule says that for any (not necessarily dull) term b : ♮A,
there is a term b♮ : A.

The rules for this type former are formally similar to Quipper’s !A, and is used in its translation
below. The ‘dullness’ of the context replaces the restriction of the context to only parameter types.

Tensor. The ⊗-type is a restricted version of the ordinary ×-type so that to form a ⊗-pair, the two
elements of the pair must divide the resources of the palette in a linear way. We call a valid chunk of the
palette a slice and a valid division of a palette into two slices a split, written Φ ⊢ sL ⊠ sR split. A split of
a palette Φ into sL and sR semantically represents a morphism Φ → sL ⊗ sR, consisting of the projections
from ordinary products and the symmetry and re-association of tensor products necessary to divide Φ in
that way.

As a piece of syntax, a slice is either:

• r, a single colour from Φ;

• t.≺ c1 ⊗ c2 ⊗·· ·⊗ cn(⊗1), a fresh colour t followed by a list of labels from Φ optionally including
the special symbol 1. The period indicates that t is a freshly bound colour.

Not all lists of labels form a valid slice: the choices must be compatible with the shape of the palette.
For example, when we reach a comma node we must choose exactly one branch to be included in the
slice. A slice also cannot contain both a colour together with any piece of the subpalette under that
colour; choosing a colour already specifies that we are selecting the entire subpalette. The formal rules
for slices and splits are given in the Appendix, but the way they work are clearest from examples:

t≺ a⊗ b ⊢ a⊠ b split
t≺ a⊗ b ⊢ b⊠ a split

t≺ (a≺ p⊗ q)⊗ b ⊢ a⊠ b split
t≺ (a≺ p⊗ q)⊗ b ⊢ p⊠ (t’≺ q⊗ b) split
t≺ (a≺ p⊗ q)⊗ b ⊢ q⊠ (t’≺ p⊗ b) split
t≺ (a1 ⊗ b1,a2 ⊗ b2) ⊢ a1 ⊠ b1 split
t≺ (a1 ⊗ b1,a2 ⊗ b2) ⊢ a2 ⊠ b2 split
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The rules for the ⊗-type are then

⊗-FORM

t | · ⊢ A type t | · ⊢ B type

t≺ Φ | Γ ⊢ A⊗B type

⊗-INTRO

t≺ Φ ⊢ sL ⊠ sR split
Φ

sL | Γ
sL ⊢ a : A Φ

sR | Γ
sR ⊢ b : B

t≺ Φ | Γ ⊢ a ⊗sL sR
b : A⊗B

⊗-ELIM

t≺ Φ | Γ,zt : A⊗B ⊢ C type

t≺ Φ, l⊗ r | Γ,xl : A,yr : B ⊢ c : C[x ⊗l r y/z]
t≺ Φ | Γ ⊢ s : A⊗B

t≺ Φ | Γ ⊢ let x ⊗l r y := s inc : C[s/z]

The ⊗-type A⊗B can be formed for any closed types A and B. To introduce a ⊗-pair x ⊗sL sR
y, we must

split the context into two pieces and use the pieces separately to prove x and y. This is very similar to the
Quipper rule; the main difference is that the division of the context into pieces (sL and sR) is recorded as
data in the derivation, rather than having it implicit in the context of the conclusion Γ1+Γ2 as in Quipper.

To eliminate a ⊗-pair p, we may assume it is of the form x ⊗r b y, where x and y are assigned fresh
colours r and b that are tensored together as r⊗ b at the top level in the ambient palette. Although it
seems almost identical to the Quipper rule it is different in an important way: the Quipper rule divides
the context into Γ1 and Γ2 to form the target of the elimination and the body, whereas the bunched theory
does not split the context at all. The new tensor pair r⊗ b in the palette is combined with the existing
palette using a palette comma, i.e. ×, rather than ⊗.

In general, we have a ‘pattern matching’ construct that allows us to decompose an iterated ⊗ all at
once. This is necessary, for example, to define an associativity map via

λ t.let (x⊗ y)⊗ z := t inx⊗ (y⊗ z),

Unit. The unit is implemented by allowing a special ‘unitor’ split, where the entire palette is placed on
one side, as in t≺ Φ ⊢ t⊠∅ split. The rules are:

I-FORM

t≺ Φ | Γ ⊢ I type

I-INTRO

t≺∅,Φ | Γ ⊢ ◊ : I

I-UNITOR-ELIM
t | · ⊢ B type

t≺ Φ | Γ,zt : I ⊗B ⊢ C type
t≺ Φ | Γ,yt : B ⊢ c : C
t≺ Φ | Γ ⊢ s : I ⊗B

t≺ Φ | Γ ⊢ let ◊ ⊗∅ t y := s inc : C

The unit type I is well formed in any context. When one of these special markers ∅ is present at the top
of the palette (as a result of using a unitor split), we may use it to form a term of the unit. And to use a
term of I, we apply the unitor in the other direction: this is described as a let binding that exposes the B
factor of a type I ⊗B.
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Hom. Finally, we have ⊸-types.

⊸-FORM
r | · ⊢ A type p | · ⊢ B type

t≺ Φ | Γ ⊢ A ⊸ B type

⊸-INTRO
p≺ (t≺ Φ)⊗ r | Γ,xr : A ⊢ b : B

t≺ Φ | Γ ⊢ ∂
pxr.b : A ⊸ B

⊸-ELIM
t≺ Φ ⊢ sL ⊠ sR split

(t≺ Φ)sL | Γ
sL ⊢ f : A ⊸ B (t≺ Φ)sR | Γ

sR ⊢ a : A

t≺ Φ | Γ ⊢ f sL⟨a⟩sR : B

The type A ⊸ B can be formed for any closed types A and B. The ⊸-introduction rule is a linear version
of λ -abstraction, written (∂ pxr.b). The bound variable x is labelled with a fresh colour r that is combined
with the existing palette using ⊗. Like any term, the body of the function needs a colour to lie at the
front of the context, which is the purpose of the second bound colour p. The ⊸-elimination rule follows
a similar pattern to ⊗-introduction. The palette is divided linearly into two pieces, with one piece used
to produce the hom and the other to produce its argument.

Properties of the Linear Types. We quote the following basic facts about the linear type formers for
use in the verification section.

Proposition 2.1. The following properties are all provable internal to the theory.

• ♮ is self-adjoint, in that ♮(♮A → B)≃ ♮(A → ♮B) ([14, Corollary 1.1.26])

• ♮A× (B⊗C)≃ (B× ♮A)⊗C ≃ B⊗ (♮A×C) ([14, Proposition 1.3.12])

• ⊗ is associative ([14, Proposition 1.3.27]) and unital ([14, Lemma 1.4.8])

• A uniqueness principle for ⊗ holds: for any function f : A⊗B →C, and term p : A⊗B there is an
equality f (p) = let x ⊗a b y := p in f (x ⊗a b y) ([14, Proposition 1.2.2]).

• Equality is a congruence on ⊗, i.e., if a = a′ and b = b′ then a⊗ a′ = b⊗ b′ ([14, Proposition
1.3.28]).

• ⊗ is left adjoint to ⊸, in that ♮(A⊗B →C)≃ ♮(A → (B ⊸C)) ([14, Proposition 1.5.9])

The mix of the two kinds of arrows in the statement of adjointness is important! To make sense of
the last equivalence, think of ♮(P → Q) as internalising an external judgement P ⊢ Q: the equivalence
then expresses the external adjointness of ⊗ and ⊸.

3 Translating from Proto-Quipper

We now sketch a translation of the fragment of Quipper2 given in Figure 1 into this bunched type theory.
The main ideas of the translation are:

• The “context comma” in Quipper corresponds to the linear tensor, so the translation of any Quipper
context will have palettes of a very simple form: a single top-level colour t which splits into an
iterated tensor of colours c−, one for each Quipper variable. As the nullary case of this, the empty
context must be translated to the monoidal unit, rather than just the empty context of the bunched
theory, which represents the terminal object.

2We shorten Proto-Quipper-M to Quipper throughout, though we always mean the standalone type non-dependent theory
described in [17].
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VAR

Φ,x : A ⊢ x : A

⊗-INTRO

Φ,Γ1 ⊢ M : A Φ,Γ2 ⊢ N : B

Φ,Γ1,Γ2 ⊢ M⊗N : A⊗B

⊗-ELIM

Φ,Γ1 ⊢ M : A⊗B Φ,Γ2,x : A,y : B ⊢ N : C

Φ,Γ1,Γ2 ⊢ let x⊗ y := M inNC

⊸-INTRO
Γ,x : A ⊢ M : B

Γ ⊢ λx.M : A ⊸ B

⊸-ELIM
Φ,Γ1 ⊢ M : A ⊸ B Φ,Γ2 ⊢ N : A

Φ,Γ1,Γ2 ⊢ M(N) : B

!-INTRO
Φ ⊢ M : A

Φ ⊢ liftM :!A

!-ELIM
Γ ⊢ M :!A

Γ ⊢ forceM : A

Figure 1: A Fragment of Proto-Quipper-M

• The notion of parameter types/parameter contexts plays a dual role in Quipper: representing the
indexing set in when forming types, and representing the monoidal unit (pulled back over an arbi-
trary indexing set) when introducing terms of Unit and !A. The interpretation of every parameter
type is equivalent to a constant family at the monoidal unit over some indexing set. The factor of
I is necessary because context extension is always interpreted as combination with ⊗, even if the
only data of the type that is actually used is the indexing set itself. In the bunched type theory,
where we have access to non-linear type formers, we can manipulate the indexing set directly.

• Some of functors used to define the semantics of Quipper can be defined internally to the bunched
type theory. Specifically, the operation q♯ that replaces an indexed family with the constant family
at the terminal object is exactly the ♮ modality of the bunched type theory. The operation p♯ that
replaces a family A with the constant family at the monoidal unit can be defined as I × ♮A. So an
internal definition of the right adjoint q♭ to to p♯ is easy to read off: ♮(I → A), by composing the
right adjoints of the two components. This leads to the internal definition of the ! operation.

The translation is defined in Figure 2. We omit the term translations for Unit and Nat because
they are not used in the example. Contexts are translated exactly as indicated above: each variable x
is assigned a colour cx, and these colours are all combined with ⊗ in the palette. The empty context
becomes a single variable φ :cφ I, whose colour cφ is added to the palette in the same way. The translation
of types is straightforward: the ⊗ and ⊸ types become the corresponding types in the bunched type
theory, and !A is translated to .

For terms, let us first describe the translation in the easy case that the parameter part of the context Φ

is empty.
The context manipulation done in the ‘splitting’ rules of Quipper (i.e. ⊗-introduction/elimination

and ⊸-elimination) need to be written in terms of slices and splits in the bunched type theory. There
is one thing to be careful of: the colour of the phase variable cφ can only be assigned to one side of the
split; we arbitrarily choose the left side. To deal with this, we define an admissible ‘unit substitution’
that replaces any use of φ with the unit term ◊. This is not a well-typed operation in full generality, but
it is well-typed in the image of the translation.

Proposition 3.1. Suppose Φ is either of the form t ≺ cφ or t ≺ (cφ ⊗Φ′), and ∅ does not occur in Φ′.
Then the admissible substitutions

UNIT-SUB
Φ palette

Φ[∅/cφ ] palette

UNIT-SUB
Φ ⊢ s slice

Φ[∅/cφ ] ⊢ s[∅/cφ ] palette

UNIT-SUB
Φ | φ :cφ I,Γ ⊢ a : A

Φ[∅/cφ ] | Γ ⊢ a[◊/φ ] : A

are well-typed.
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J·Kcols :≡ cφ
J·Kvars :≡ φ :cφ I

JΓ,x : AKcols :≡ JΓKcols⊗ cx
JΓ,x : AKvars :≡ JΓKvars,x :cx JAK

JΓKpal :≡ t≺ JΓKcols palette
JΓK :≡ JΓKpal | JΓKvars ctx

JUnitK :≡ I

JA⊗BK :≡ JAK⊗ JBK
JA ⊸ BK :≡ JAK ⊸ JBK

J!AK :≡ I × ♮(I → JAK)
JNatK :≡ I ×N

JxK :≡ let ◊⊗ x′ := φ ⊗ x inx′

J(M,N)K :≡ JMK ⊗JΓ1Kpal JΓ2Kpal[∅/cφ ]
JNK[◊/φ ]

Jlet (x,y) := M inNK :≡ let h⊗ (x′⊗ y′) := (∂x.∂y.JNK) ⊗JΓ1Kpal JΓ2Kpal[∅/cφ ]
(JMK[◊/φ ]) inh⟨x′⟩⟨y′⟩

Jλx.MK :≡ ∂
txcx .JMK

JMNK :≡ JMKJΓ1Kpal⟨JNK[◊/φ ]⟩JΓ2Kpal[∅/cφ ]

JliftMK :≡ (φ ,(λ s.JMK[s/φ ])♮)

JforceMK :≡ let (φ ′, f ) := JMK in f♮(φ ′)

Figure 2: The Translation of Contexts, Types and Terms

The point of the previous is to engineer the following result:
Proposition 3.2. For any Quipper contexts Γ1 and Γ2, there is a split

JΓ1,Γ2Kpal ⊢ JΓ1Kpal⊗ JΓ1Kpal[∅/cφ ] split

where JΓ1Kpal[∅/cφ ] denotes the operation which

JΓ1Kpal[∅/cφ ]

Turning to the term translations in Figure 2, we consider them one at a time:
• JxK: The translated context is precisely of the form t ≺ (cφ ⊗ cx) | φ :cφ I,x :cx JAK, and so we can

form φ ⊗ x : I ⊗ JAK and use the unitor eliminator to remove the I.

• J(M,N)K: This is almost immediate by induction and Proposition 3.2. The terms JMK and JNK are
well-typed in contexts JΓ1K and JΓ2K respectively. These are weakened to

JΓ1Kpal | JΓ1Kvars,JΓ2Kvars ⊢ JMK : A

JΓ2Kpal | JΓ1Kvars,JΓ2Kvars ⊢ JNK : B
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by adding in the missing variables for each. These are very nearly of the correct form to apply
⊗-paring: the only issue is that φ :cφ I appears in both contexts. This is corrected by applying the
unit substitution to JNK. Often, this substitution will reach an instance of the variable rule and
cancel with the unitor eliminator, as we will see in the example later.

• Jlet (x,y) := M inNK: This is more involved, to deal with the mismatch between the ⊗-eliminators
of the two theories: in the bunched type theory the decomposed ⊗ is concatenated to the context
with ×, whereas Quipper adds it using ⊗.
For this we use a similar trick to [14, §1.6.1] to shuffle pieces of the context around. First JNK
is used to produce a hom of shape JAK ⊸ JBK ⊸ JCK in context JΓ1K, which is paired with JNK
(using the same unit manipulations as in ⊗-intro to deal with φ ). Together this forms a term of
type (JAK ⊸ JBK ⊸ JCK)⊗ (JAK⊗ JBK). After pattern matching this term as h⊗ (x′⊗ y′), we can
simply (linearly) evaluate h at x′ and y′.

• Jλx.MK: This is straightforwardly translated to a linear lambda, assigning the new colour cx to the
new variable x.

• JMNK: This is straightforwardly translated to linear application, surrounded by the same unitor
manipulations we have seen twice already.

• JliftMK: By the assumption that Φ is empty, the term JMK is in context cφ | φ : I ctx, so, after
α-renaming φ to s, we may form the non-linear function λ s.JMK[s/φ ] : I → JAK. This is now a
closed term, so we may use ♮-intro and (non-linearly) pair with the φ of the current context.

• JforceMK: We can extract the term of I and the function, and apply them; this is the counit of
Quipper’s p♯ ⊣ q♭ adjunction.

Now, we turn to handling a possibly non-empty parameter context. The reason this is a slight pain
is that context structure used in Quipper does not distinguish between ‘parameter variables’ and ‘linear
variables’: the choice of whether to consider a variable as a parameter is made independently every time
a splitting rule is invoked. Our solution is to pack and unpack the chosen parameter context before and
after a rule is used, using the following propositions.

Proposition 3.3. If P is a parameter type, then JPK ≃ I × ♮JPK.

Proof. By induction on the structure of P. This is an internal version of the observation in [17, Remark
3.9].

Proposition 3.4. For any parameter context Φ and context Γ, there are admissible operations

PACK
t≺ cφ ⊗ JΦKcols⊗ JΓKcols | φ :cφ I,JΦK,JΓK ⊢ a : A

t≺ cφ ⊗ JΓKcols | φ :cφ I,JΦK,JΓK ⊢ packΦ(a) : A

UNPACK
t≺ cφ ⊗ JΓKcols | φ :cφ I,JΦK,JΓK ⊢ a : A

t≺ cφ ⊗ JΦKcols⊗ JΓKcols | φ :cφ I,JΦK,JΓK ⊢ unpackΦ(a) : A

where JΦK denotes replacing every variable in JΦK with a marked variable.

Proof. By induction on the length of Φ, using Proposition 3.3 to extract a term of I from each variable
in JΦK, and iteratively applying the unitors to pack/unpack these into the variable φ .



M. Riley 11

Each of the translations in Figure 2 can be modified to pack and unpack the parameter context as
necessary. For example, the variable rule becomes JxK :≡ unpackΦ(let ◊⊗ x′ := φ ⊗ x inx′), and the λ

rule becomes Jλx.MK :≡ unpackΦ(∂
txcx .packΦ(JMK)).

Proto-Quipper-D. We believe that the dependent linear type theory of Proto-Quipper-D [2] can also
be translated into the bunched type theory, although the translation will necessarily be much more com-
plicated.

In Proto-Quipper-D, the ‘underlying shape’ operation Sh(−) that mediates dependency is defined
inductively on the syntax of types, whereas in the bunched type theory, the indexing set of a type A is
extracted by the modality ♮A. This ♮A does not compute inductively on the structure of A, instead, the
equalities defining Sh in Proto-Quipper-D become theorems of the bunched type theory.

For example, the definition Sh((x : A)⊗B) = (x : Sh(A))⊗Sh(B) corresponds to the internally prov-
able equivalence I×♮[(x : A)⊗B]≃ [(x : I×♮A)⊗(I×♮B)]. These equivalences would need to be inserted
any time that a dependent type is formed.

In Proto-Quipper-D, the ‘→’ type former is introduced to represent underlying indexing set of a ⊸-
type. Like !A, this is a construction that already exists in the bunched type theory: the translation would
define JA → BK :≡ I × (♮A → ♮B).

A version of Proposition 3.3 would continue to be true in this setting, and so the ω annotations could
be handled in a similar way to the to the parameter contexts Φ of Proto-Quipper-M: the unitors would be
used to duplicate the assumptions as necessary when using the splitting rules.

4 Verification

We now translate what is almost the simplest possible Quipper program and verify one of its properties.
The following code:

object Qubit
gate H : Qubit -> Qubit
circuit : ! (Qubit * Qubit -> Qubit * Qubit)
circuit n p = let (x, y) = p

in (H x, y)

represents the circuit with two qubits that simply applies the H gate to the first qubit. Let us verify that
this circuit is its own inverse, assuming that H is its own inverse.

With the hidden instances of ! elaborated, the function is defined by

H : !(Qubit → Qubit)
circuit : !(Qubit⊗Qubit → Qubit⊗Qubit)
circuit :≡ lift λ p.let (x,y) := p in((forceH)(x),y)

We postulate a type Qubit and define JQubitK :≡ Qubit. Applying the translation to the types of H
and JcircuitK gives

JHK : I × ♮(I → (Qubit⊸ Qubit))

JcircuitK : I × ♮(I → (Qubit⊗Qubit⊸ Qubit⊗Qubit))
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Let us work mechanically through the translation of the term JcircuitK, omitting most of the slice
annotations for legibility.

Jlift λ p.let (x,y) := p in((forceH)(x),y)K

≡ (φ ,(λ s.Jλ p.let (x,y) := p in((forceH)(x),y)K[s/φ ])♮))

≡ (φ ,(λ s.∂ p.Jlet (x,y) := p in((forceH)(x),y)K[s/φ ])♮))

≡ (φ ,(λ s.∂ p.

let h⊗ (x′⊗ y′) := (∂x.∂y.J((forceH)(x),y)K[s/φ ])⊗ (JpK[◊/φ ]) inh⟨x′⟩⟨y′⟩)♮)

The first remaining translation becomes

J((forceH)(x),y)K
≡ J(forceH)(x)K⊗ JyK[◊/φ ]

≡ J(forceH)(x)K⊗ (let ◊⊗ x′ := φ ⊗ y inx′)[◊/φ ]

≡ J(forceH)(x)K⊗ y

≡ (JforceHK⟨JxK[◊/φ ]⟩)⊗ y

≡ (JforceHK⟨x⟩)⊗ y

and similarly to show that JpK[◊/φ ]≡ p. So in all,

JcircuitK ≡ (φ ,(λ s.∂ p.let h⊗ (x′⊗ y′) := (∂x.∂y.(JforceHK⟨x⟩)⊗ y)⊗ p inh⟨x′⟩⟨y′⟩)♮)

Now that we are working in the bunched type theory, we can perform some simplification. First, the
interesting part of this term is the piece of type I → (Qubit⊗Qubit⊸ Qubit⊗Qubit), so

JcircuitK2 : I → (Qubit⊗Qubit⊸ Qubit⊗Qubit)

JcircuitK2 :≡ λ s.∂ p.let h⊗ (x′⊗ y′) := (∂x.∂y.(JforceHK⟨x⟩)⊗ y)⊗ p inh⟨x′⟩⟨y′⟩)

The next simplification is applying the chain of equivalences

(I → (A ⊸ B))≃ (I ⊗A → B)≃ (A → B)

to remove the need for the variable s: this gives

JcircuitK3 : Qubit⊗Qubit→ Qubit⊗Qubit

JcircuitK3 :≡ λ p.let h⊗ (x′⊗ y′) := (∂x.∂y.(JforceHK⟨x⟩)⊗ y)⊗ p inh⟨x′⟩⟨y′⟩)

We can now apply the uniqueness principle for ⊗ on p, and the term mostly collapses:

JcircuitK3 : Qubit⊗Qubit→ Qubit⊗Qubit

JcircuitK3 ≡ λ p.let h⊗ (x′⊗ y′) := (∂x.∂y.(JforceHK⟨x⟩)⊗ y)⊗ p inh⟨x′⟩⟨y′⟩)
= λ p.let r⊗ s := p in let h⊗ (x′⊗ y′) := (∂x.∂y.(JforceHK⟨x⟩)⊗ y)⊗ (r⊗ s) inh⟨x′⟩⟨y′⟩)
≡ λ p.let r⊗ s := p in(∂x.∂y.(JforceHK⟨x⟩)⊗ y)⟨r⟩⟨s⟩
≡ λ p.let r⊗ s := p inJforceHK⟨r⟩⊗ s
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We have finally reached how we would have written the circuit by hand, if we were working directly in
the bunched type theory.

It is easy to verify that this is self-inverse, i.e. that JcircuitK3 ◦ JcircuitK3 = idQubit⊗Qubit. By func-
tion extensionality, it is sufficient to check pointwise. By the same uniqueness principle as above, it is
sufficient to check on terms x⊗ y, and then:

JcircuitK3(JcircuitK3(x⊗ y))

≡ JcircuitK3(JforceHK⟨x⟩⊗ y

≡ JforceHK⟨JforceHK⟨x⟩⟩⊗ y

We assumed that H was self inverse, i.e., JforceHK⟨JforceHK⟨x⟩⟩ = x, so congruence of equality on ⊗
lets us conclude that JcircuitK3(JcircuitK3(x⊗ y)) = x⊗ y as desired.
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A Rules for Palettes, Slices and Splits

Palettes.

PAL-EMPTY

1 palette

PAL-×
Φ1 palette Φ2 palette

Φ1,Φ2 palette

PAL-UNIT

∅ palette

PAL-⊗
Φ1 palette Φ2 palette

Φ1 ⊗Φ2 palette

PAL-COL
Φ palette

c≺ Φ palette

Slices. We have a ‘preslice’ judgement, representing a valid list of colours from the palette, a ‘presliceε ’
judgement that optionally adds −⊗ 1, and finally an actual ‘slice’ judgement, adding the fresh t. ≺ −
top label if necessary.

Φ ⊢ ∅ preslice c≺ Φ ⊢ c preslice
Φ ⊢ s preslice

c≺ Φ ⊢ s preslice

Φ1 ⊢ s preslice

Φ1,Φ2 ⊢ s preslice

Φ2 ⊢ s preslice

Φ1,Φ2 ⊢ s preslice

ΦL ⊢ sL preslice ΦR ⊢ sR preslice

ΦL ⊗ΦR ⊢ sL ⊗ sR preslice

Φ ⊢ s preslice

Φ ⊢ s presliceε

Φ ⊢ s preslice

Φ ⊢ s⊗1 presliceε

Φ ⊢ c colour
Φ ⊢ c slice

Φ ⊢ s presliceε

Φ ⊢ (t.≺ s) slice

For any slice s, the underlying preslice of s, written u(s), is defined by u(c) :≡ c and u(t. ≺ s) :≡ s;
this is used when describing the rules for splits.
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Splits.

∅ ⊢ (∅⊗ εL)⊠ (∅⊗ εR) presplit

εL ≡⊤ or εR ≡⊤
Φ ⊢ (∅⊗ εL)⊠ (∅⊗ εR) presplit

c≺ Φ ⊢ (c⊗ εL)⊠ (∅⊗ εR) presplit c≺ Φ ⊢ (∅⊗ εL)⊠ (c⊗ εR) presplit

Φ ⊢ sL ⊠ sR presplit

c≺ Φ ⊢ sL ⊠ sR presplit

Φ1 ⊢ s1L ⊠ s1R presplit

Φ1,Φ2 ⊢ s1L ⊠ s1R presplit

Φ2 ⊢ s2L ⊠ s2R presplit

Φ1,Φ2 ⊢ s2L ⊠ s2R presplit

Φ1 ⊢ s1L ⊠ s1R presplit
Φ2 ⊢ s2L ⊠ s2R presplit

Φ1 ⊗Φ2 ⊢ (s1L ⊗ s2L)⊠ (s1R ⊗ s2R) presplit

Φ ⊢ u(sL)⊠u(sR) presplit

Φ ⊢ sL ⊠ sR split

B Admissible Rules

Marking contexts:

CTX-MARK
t≺ Φ | Γ ctx

t | Γ ctx
−−−−−−−−

· :≡ ·

Γ,xc : A :≡ Γ,xc : A

Γ,xc : A :≡ Γ,xc : A

t≺ Φ | Γ ctx

Γ ≡ Γ

−−−−−−−−

Filtering contexts:

PAL-FILTER
Φ ⊢ c colour

Φ
c palette

−−−−−−−
Φ ⊢ c colour Φ

c ⊢ d colour

(Φc)d ≡ Φ
d palette

−−−−−−−−−−−−−−−−−−

CTX-FILTER
Φ ⊢ c colour Φ | Γ ctx

Φ
c | Γ

c ctx
−−−−−−−−−−−−−−−−

(·)c :≡ ·

(Γ,xd : A)c :≡ Γ
c,xd : A if d ∈ Φ

c

(Γ,xd : A)c :≡ Γ
c,xd : A if d /∈ Φ

c

(Γ,xd : A)c :≡ Γ
c,xd : A

Palette-weakening and mark-weakening:

PALWK

t | Γ ctx
t | Γ ⊢ J

t≺ Φ | Γ ⊢ J
−−−−−−−−− MARKWK

t≺ Φ | Γ ctx
t | Γ ⊢ J

t≺ Φ | Γ ⊢ J
−−−−−−−−−


	Introduction
	Bunched Dependent Type Theory
	Translating from Proto-Quipper
	Verification
	Rules for Palettes, Slices and Splits
	Admissible Rules

