
Wesleyan ⋄ University

A Bunched Homotopy Type Theory for
Synthetic Stable Homotopy Theory

by

Mitchell Riley

Faculty Advisor: Dr. Daniel R. Licata

A dissertation submitted to the Faculty of Wesleyan University
in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Middletown, Connecticut May 2022



Abstract

Homotopy type theory allows for a synthetic formulation of homotopy theory, where arguments
can be checked by computer and automatically apply in many semantic settings. Modern homotopy
theory makes essential use of the category of spectra, the natural setting in which to investigate
‘stable’ phenomena: the suspension and loop space operations become inverses. One can define a
version of spectra internally to type theory, but this definition can be quite difficult to work with. In
particular, there is not presently a convenient way to construct and manipulate the smash product
and internal hom of such spectra. This thesis describes an extension of Martin-Löf Type Theory
that is suitable for working with these constructions synthetically.

There is an ∞-topos of parameterised spectra, whose objects are an index space with a family of
spectra over it, so standard homotopy type theory can be interpreted in this setting. To isolate
the spaces (as objects with the trivial family of spectra) and the spectra (as objects with trivial
indexing space), we extend type theory with a novel modality ♮ that is simultaneously a monad
and a comonad. Intuitively, this modality keeps the base of an object the same but replaces the
spectrum over each point with a trivial one.

The system is further extended with a monoidal tensor ⊗, unit S and internal hom ⊸, which
capture abstractly the constructions on spectra mentioned above. We are lead naturally to consider
a ‘bunched’ type theory, where the contexts have a tree-like structure. The modality is crucial for
making dependency in these linear type formers work correctly: dependency between ⊗ ‘bunches’
is mediated by ♮.

To demonstrate that this type theory is usable in practice, we prove some basic synthetic results
in this new system. For example, externally, any map of spaces induces a ‘six-functor formalism’
between the categories of parameterised spectra over those spaces, and this structure can be
reconstructed internal to the type theory. We additionally investigate an axiom asserting that the
internal category of spectra is semiadditive; we show that in the presence of univalence this in fact
implies that the category of spectra is stable.
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Introduction

Homotopy type theory [HoTTBook], the extension of Martin-Löf Type Theory with higher inductive
types and Voevodsky’s univalence axiom, has proven a useful tool for formalising homotopy-
theoretic arguments in a manner that can be verified by computers. Rather than working with
concrete topological spaces or simplicial sets, one works with types and the universal constructions
provided by the type formers of the theory. Working this way sometimes requires clever new
arguments for standard results, but the payoff is that the same proof applies in any model of the
theory, not just in the homotopy theory of spaces. The basics of synthetic homotopy theory are
presented in [HoTTBook, Chapter 8], and a significant number of results have been developed and
formalized since [nLaba].

It is conjectured that all of homotopy type theory (as in [HoTTBook]) can be interpreted in any
∞-topos — the interpretation of the basic Martin-Löf type theory [AW09; LW15; AK11], Voevodsky’s
univalence axiom [KL21; GK17; Shu15; Shu19a] and a class of higher inductive types [LS20] have
been worked out, though closure of the universes under higher inductive types is in progress.

One of the main advantages of HoTT is that all constructions performed in it are necessarily
homotopy invariant. However, this is a double-edged sword, as it rules out some of the first
definitions from algebraic topology one might hope to make.

For example, a key invariant of topological spaces is their homology and cohomology groups,
which are often easier to calculate than their homotopy groups. Externally, the ordinary homology
and cohomology of a space X are defined using maps into X from simplices of various dimensions.
But these simplices are all contractible, so internal to type theory they are indistinguishable from
the point. Instead, homology and cohomology can be defined in type theory [Cav15; Gra18] via the
spectra that represent them.

Classically, the study of spectra was motivated by the Freudenthal suspension theorem (see [HoT-
TBook, Chapter 8] for a proof in type theory), which implies that, for nice spaces X and Y, the
sequence obtained by repeated suspension

[X, Y]→ [ΣX, ΣY]→ [Σ2X, Σ2Y]→ . . .

eventually stabilises. Stable homotopy theory studies the phenomena that survive after arbitrarily
many suspensions, and it is an important tool for obtaining results in unstable homotopy theory as
well — for example, the homotopy groups of spheres in a certain range coincide with certain stable
homotopy groups. One can form a category out of the above observation, where the objects are nice
pointed spaces and the hom-sets are given by the colimit over the above diagram, but the resulting
category does not have very nice properties. This motivates passing to a category of spectra that
includes the previous as a full subcategory, but is much better behaved categorically.
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Using ∞-categorical technology (by which we mean (∞, 1)-categorical), the ∞-category of
spectra can be defined by starting with the ∞-category of pointed spaces S∗, and inverting the loop
space functor Ω in a universal way:

Spec = lim←−
(
· · · Ω−→ S∗

Ω−→ S∗
Ω−→ S∗

)
In the ∞-category of spectra, the suspension Σ and loop space Ω functors are equivalences, in
contrast to ordinary spaces where Σ and Ω are far from being equivalences. This makes Spec the
right place to do stable homotopy theory: everything is stable under suspension.

Unwinding the above definition, a spectrum can be presented concretely as a sequence of
pointed spaces X0, X1, X2, . . ., together with a pointed equivalence between each space and the loop
space of the next, X0 ≃⋆ ΩX1, X1 ≃⋆ ΩX2, . . . . This definition of spectra is readily internalised in
type theory, replacing ‘pointed spaces’ with ‘pointed types’, and has been formalised [SDRPS19].
However, most basic constructions on spectra are still works in progress, as working with such
spectra can be difficult. Instead of rebuilding the theory of spectra from scratch within type theory,
we could instead use a type theory that provides some of the structure built-in.

It would therefore be nice to have a type theory that allows us to manipulate spectra in an
ergonomic way. The issue is that spectra behave much like objects from algebra, such as modules
over a ring or chain complexes, rather than like topological spaces or sets. The category of spectra
is not cartesian closed, rather it is monoidal closed for an operation on spectra called the smash
product. Because of this inherent ‘linear’ nature, we cannot model MLTT directly in the category of
spectra. Instead, our strategy is to consider a model in parameterised spectra: space-indexed families
of spectra.

The ∞-category PSpec of parameterised spectra can be pleasantly described as follows [ABG18]:
Given a space X, one can think of it as an ∞-groupoid and consider the functor ∞-category
Fun(X, Spec). The objects of this are our parameterised spectra over X. This assignment from
spaces to functor categories assembles into a functor Sop → Cat∞, with Cat∞ the ∞-category of
∞-categories. An ∞-categorical version of the Grothendieck construction yields the ∞-category
PSpec of parameterised spectra.

These objects have both linear and nonlinear aspects: the indexing space behaves nonlinearly
and the spectra associated to each index behave linearly. The ∞-category of parameterised spectra
was shown to be an ∞-topos by Joyal and Biedermann [Joy08], and so admits a model of MLTT
with the univalence axiom. Thus, we can begin by interpreting HoTT into this ∞-topos. There
are important practical advantages over designing a new type theory from scratch for just the
category of spectra, not the families: we can reuse all of the synthetic homotopy theory that has
been developed for an arbitrary ∞-topos, and we can reuse existing proof assistants to work in this
setting.

The ‘Underlying Space’ Modality

When working in HoTT with the model in parameterised spectra in mind, it will be necessary to
have some syntactic way to say when a type denotes a single spectrum, rather than a family of
them — for example, the fact that suspension and loop space are an equivalence holds only for
individual spectra, not families thereof. Moreover, it will be necessary to say when a type (in PSpec)
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denotes an ordinary space; for example, some constructions that we will perform apply only to
families of spectra over a space, not families of spectra over a spectrum, so in certain places we will
want to restrict dependency to types that denote spaces. It turns out that we can access both the full
subcategory of spaces and the full subcategory of spectra by way of a modality [HoTTBook; RSS20].

A basic operation on PSpec is the functor that, given a parameterised spectrum, extracts its
underlying space. In the other direction, we can assign to each space X the parameterised spectrum
(X, const0), where const0 : X → Spec denotes the constant functor at the zero spectrum (the
spectrum with the one-point space at each level). Because 0 is both initial and terminal in Spec, this
functor is both left and right adjoint to the forgetful functor from that extracts the index space:

PSpec S⊤
⊤
0

0

This diagram satisfies the additional coherence of a bireflective subcategory [FOPTST99]. This
means that the roundtrip on PSpec, which we write as ♮, has a number of special properties: is a
left-exact idempotent monad and comonad, it is adjoint to itself, and the counit followed by the
unit ♮E→ E→ ♮E is the identity. Then, we can isolate the spaces within the parameterised spectra
as the ♮-modal types, roughly the types A such that A ≃ ♮A — i.e., an object is a space iff it is
equivalent to the object consisting of the same base space with the 0-spectrum over every point,
because that means the object has no interesting spectra to begin with. Dually, we can isolate the
spectra as the ♮-connected types, the types such that ♮A is contractible — i.e., an object is a single
spectrum iff it is a family of spectra over the point.

Monadic modalities are well-studied in axiomatic HoTT [RSS20], but to describe non-trivial
comonadic modalities, one must modify the judgemental structure of the context. The adjunction
between S and PSpec described above is a degenerate example of axiomatic cohesion [Law07]. An
∞-topos T is cohesive (over S) if there is a string of adjoint functors relating T to S , satisfying
certain conditions. These adjunctions induce a string of adjoint functors S ⊣ ♭ ⊣ ♯ on T so that S

and ♯ are monads and ♭ is a comonad. In our setting, we have S ≡ ♭ ≡ ♯, hence the name ♮ for our
roundtrip operation.

A ‘cohesive type theory’ capturing the structure of cohesion was introduced by Shulman [Shu18],
where the three functors also appear as unary type formers. The part of the theory we are especially
interested in is the ♭/♯ fragment, which on its own is called ‘spatial type theory’. In spatial type
theory, the context is divided into two zones following [Bar96; PD01]: a ‘modal’ context zone, where
the types of all variables are thought of as invisibly prefixed with a ♭, followed by an ordinary
context zone with ordinary variables. The rules for the ♭ and ♯ modalities move variables between
the zones to enforce the correct relationships between the modalities and the judgemental version
of ♭ represented by the modal context zone.

In principle one could use spatial type theory to reason about PSpec by adding axioms asserting
that the modalities are all equivalent. While we have no objection in principle to adding axioms to
type theories for synthetic homotopy theory (we extend HoTT, which already adds univalence and
higher inductive types as axioms), the ergonomics of such axioms would be poor — the equivalence
between ♭ and ♯ in this setting is so fundamental that transport across these equivalences would be
pervasive in every construction.
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In Chapter 1 of this thesis, we describe an extension of the judgements and rules of MLTT which
give the ♮ modality the correct properties without the need for any axioms. Relative to existing
modal dependent type theories, the primary difficulty of the ♮ modality is that the bireflection
induces a non-trivial roundtrip on every type1: the unit map A→ ♮A followed by the counit map
♮A→ A. The syntax has a pair of novel features to handle this. Firstly, each variable may be used
in two ways: as normal, or “marked”, which is written x and means using it via the roundtrip
described above. Secondly, in contrast to spatial type theory, there is no separation of the context
into two zones, one modal and one non-modal. The presence of both the unit and counit mean that
modal and ordinary variables can be mixed together without restriction.

Linear Operations

Parameterised spectra also inherit a monoidal closed structure extending the monoidal closed
structure on spectra, but HoTT on its own, even extended with ♮, is still missing is a way to access
this structure. For this we would like to add linear type-formers ⊗ and ⊸ corresponding to the
monoidal closure. Combining linearity and dependent types is a difficult problem, and there have
been many different attempts and strategies.

The overriding principle of this work is that the theory ought to be an extension of ordinary
dependent type theory. There is a large body of work in synthetic homotopy theory that we do
not want to have to reconstruct in an entirely new system. This rules out all the previous work
on linear dependent type theories (as far as we are aware), where either the type theory ends up
incompatible with MLTT [Vák14; IP98; FKS20], or linear and nonlinear types inhabit different
sorts [Isa21; KPB15; Lun18]. In the latter case, the existing synthetic homotopy theory results would
only apply to the nonlinear part of the theory, and we would have to begin from scratch in the
linear part. By contrast, in an extension of ordinary dependent type theory, the usual constructions
of synthetic homotopy theory would be applicable directly to types containing linear information.
For example, the ‘suspension’ of a spectrum should be defined using the same higher-inductive
type as usual [HoTTBook, §6.5], rather as a new type-former just for linear types.

To achieve this, the new linear type-formers should be to be freely added to MLTT, so that they
produce types that can be intermingled with ordinary types as one pleases. Freely combining a
nonlinear and linear type theory has been studied in the non-dependent setting in the form of
bunched implication [OP99; OHe03]. In bunched implication there are two binary context-forming
operations, an ordinary cartesian comma and a linear monoidal product. These products can be
combined in arbitrary ways, giving contexts an inherently tree-like structure.

After introducing ♮, we present a dependent version of bunched implication that additionally
solves some of the metatheoretic issues of simply-typed bunched implication. Our theory follows
a similar idea to the simply-typed version: we will have structured contexts that allow us to
combine bunches of the context with a monoidal product, in addition to ordinary context extension.
The central question then is how dependency works between assumptions that lie in different
‘monoidally combined’ bunches. The missing ingredient here is exactly the ♮ modality.

Importantly, the dependency permitted when using the ordinary MLTT type-formers is just
as usual. For example, given two terms a, a′ : A we will always be able to form the identity type

1In full detail, the round-trip only applies to types that depend on a space, not a spectrum.
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a =A a′ : U , regardless of how A, a and a′ use the linear features of the theory. Because of this, the
new judgemental structure does not interfere with existing work in HoTT, which can be imported
essentially unchanged.

The challenge in designing this type theory is in making it usable on pen and paper in a similar
informal style to the HoTT Book and the synthetic work that follows it. The main trick is that we
separate the bunched shape of the context from the typing information of the variables in it. A
generic context Φ | Γ ctx has two pieces, a palette Φ describing the bunched structure of the context,
and then a more typical context Γ of variables with types. Each variable is labelled with a colour
from the palette, which places the data of that variable at the corresponding node of the tree. This
allows us to refer to sections of the context using labels in the palette, rather than using variable
names.

Synthetic Stable Homotopy Theory

To demonstrate that the resulting type theory is quite ergonomic to use, even without a proof
assistant, we spend Chapter 2 developing some synthetic homotopy theory informally in the style
of [HoTTBook].

While introducing the type formers we prove various basic properties that are essentially
‘getting out what we put in’; reifying the structure of contexts in the types. The emergent behaviour
is more interesting, and some of the results are unexpected.

As mentioned above, the types that correspond to spaces can be identified as those that are
♮-modal: types X for which the canonical map X → ♮X is an equivalence. We can further identify
the “parameterised spectra over X” as types A equipped with an equivalence between ♮A and X.
We show that for any internal map of spaces X → Y, there is an induced “six functor formalism”
between the spectra over X and the spectra over Y.

Our “synthetic spectra” thus far do not have all of the properties of actual spectra. To bring
the synthetic spectra closer to actual spectra, we identify a pair of axioms. The first is a ‘stability’
axiom that forces the internal category of synthetic spectra to be stable, particular making Σ ⊣ Ω
an adjoint equivalence for these types. It turns out to be sufficient to assert that coproducts and
products of synthetic spectra coincide, an apparently weaker property (Theorem 2.2.18).

The type theory augmented with this axiom (conjecturally) has models in parameterised families
in any stable ∞-category. This includes the trivial stable ∞ category, whose families are just ordinary
spaces, so this axiom does not preclude the trivial model in spaces! To home in on parameterised
spectra, we add a second axiom which connects synthetic spectra to ‘analytic’ spectra, defined
concretely as sequences of pointed types with connecting maps. We show that these axioms are
strong enough to fix the homotopy groups (appropriately defined) of the synthetic sphere spectrum
to be equivalent to the stable homotopy groups of the ordinary higher inductive spheres.
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Chapter 1

Foundations

We begin with Homotopy Type Theory as in [HoTTBook], meaning Martin-Löf Type Theory (0,
1, 2, Π, Σ, Id, U ) with (higher) inductive types and the univalence axiom. In the next few sections
we extend this theory, gradually adding additional judgemental structure to the contexts and
corresponding type formers.

• Section 1.1 introduces the concept of ‘marked’ variables and variable uses, which are used
to provide rules for the ♮ modality. The basic properties of this type former are studied in
Section 1.1.3.

• Section 1.2 further extends the context structure with a ‘palette’, in preparation for the linear
type formers. All variables are now additionally assigned a colour from this palette.

• Section 1.3 describes the ⊗-type former that internalises this new judgement structure as a
type. We allow ⊗-types to be dependent in a certain sense: dependency between the two
sides of a ⊗ is mediated by the ♮ modality.

• Section 1.4 describes S, the monoidal unit type.

• Section 1.5 describes ⊸-types, the dependent right adjoint to ⊗, and shows that it interacts
with the other type formers in various interesting ways. In Section 1.5.5, we find that
univalence implies ‘hom extensionality’, much as univalence implies ordinary function
extensionality.

• Section 1.6 shows that some of the induction principles for ⊗-types used in previous sections
are derivable via the ⊸-type. The induction principles derivable this away are still not as
strong as we might like, so we add a primitive notion of pattern matching to fill this gap.

• Section 1.7 describes the relationship between the present work and previous work on linear
dependent type theories.

We introduce the rules of this theory piecemeal so to not overwhelm the reader. The complete
collection of rules is listed in Section A.
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1.1 The Modality

This section contains joint work with Dan Licata and Eric Finster [RFL21].

We begin with our new modality, a unary type constructor ♮. Unlike the monadic modalities
studied in [RSS20] which can be described by axioms, our ♮ modality also has some comonadic
aspects. By the no-go theorem of [Shu18, Theorem 4.1] for comonadic modalities, adding our ♮
modality will necessarily require changes to the judgements of the type theory. We first describe
a judgemental version of the modality that applies to contexts and that has the desired unit and
counit maps, and then give a type constructor that internalises this judgemental operation as a
type.

1.1.1 Judgemental Rules

The new pieces of syntax and admissible operations appear in Figure 1.1, which we now discuss in
more detail.

Putting aside the new context extension CTX-EXT-MARKED for a moment, we first have the
ordinary VAR rule which does not interact with the new context structure at all. So let us inspect
the first new variable rule VAR-ROUNDTRIP. At a high level, the reason we require some new
judgemental structure for presenting the ♮ modality is that it has both a unit A→ ♮A and a counit
♮A → A and the roundtrip A → ♮A → A gives a non-trivial map for any type A. So to β-reduce
♮-INTRO followed by ♮-ELIM (once we have those rules), we need a judgemental version of this
roundtrip map A→ A to reduce to.

To achieve this, we add post-composition with the roundtrip as a new way of using variables in
the rule VAR-ROUNDTRIP, in addition to the standard VAR rule. For a variable x : A, we write x
for the roundtrip on A applied to x, and say that the variable usage is a marked variable usage. In
our intended models, this keeps the base of x the same but replaces the fibres of x with the default
sections of A. In concrete syntax, it is best to think of the variable usage x as a term constructor
underline(x), rather than considering the underline as part of the variable name.

For a general term a, we define an admissible rule ROUNDTRIP a that “underlines all of the
free variables in a”, and denotes precomposing with the roundtrip on the context. There is an
interaction with dependency, because applying the roundtrip to a term must also apply it to the
term’s type, so if x : A is a variable then an instance of VAR-ROUNDTRIP gives x : A. On the left of
: we have x as an indivisible piece of syntax, but on the right we have A which is the admissible
ROUNDTRIP rule applied to the type A. We admit that this may be confusing initially, but is quite
natural to use in practice.

For certain rules, we will need a judgement classifying terms whose free variables are only used
marked, which we call dull terms. This is signalled by asking for terms in context ‘Γ’. To make the
type theory easier to use, we will make Γ an admissible operation (defined by induction on syntax),
rather than a derivable one (a new piece of formal syntax). The new piece of formal syntax is instead
a new context extension Γ, x : A (CTX-EXT-MARKED), which should be thought of as extending the
context with ♮A instead of A itself.

The restriction imposed by a marked context extension is that a variable that is declared marked
in the context Γ, x : A can only be used marked as x in a term, as indicated in the VAR-MARKED rule.

2



CTX-EXT-MARKED
Γ ctx Γ ⊢ A : U

Γ, x : A ctx

VAR
Γ, a : A, Γ′ ⊢ x : A

VAR-ROUNDTRIP
Γ, x : A, Γ′ ⊢ x : A

VAR-MARKED
Γ, x : A, Γ′ ⊢ x : A

‘Natural’ on contexts:

CTX-MARK
Γ ctx

Γ ctx
−−−

· :≡ ·
Γ, x : A :≡ Γ, x : A

Γ, x : A :≡ Γ, x : A

Γ ctx

Γ ≡ Γ
−−−

Precomposition with the counit:

MARK
Γ ⊢ a : A

Γ ⊢ a : A
−−−−−

Γ ⊢ a : A

Γ ⊢ a ≡ a : A
−−−−−−−

Γ ⊢ a : A

Γ ⊢ a ≡ a : A
−−−−−−−

Γ ⊢ ∆ tele

Γ ⊢ ∆mΓ tele
−−−−−−−

(·)mΓ:≡ ·
(∆, x : A)mΓ:≡ ∆mΓ, x : AmΓ

(∆, x : A)mΓ:≡ ∆mΓ, x : A

MARK
Γ, ∆ ⊢ a : A

Γ, ∆mΓ ⊢ amΓ : AmΓ
−−−−−−−−−−

Precomposition with the unit/roundtrip:

MARKWK
Ψ, Γ, ∆ ⊢ a : A

Ψ, Γ, ∆ ⊢ a : A
−−−−−−−− ROUNDTRIP

Γ ⊢ a : A

Γ ⊢ a : A
−−−−− ROUNDTRIP

Γ, ∆ ⊢ a : A

Γ, ∆mΓ ⊢ amΓ : AmΓ
−−−−−−−−−−

Figure 1.1: New Context Structure.

3



Semantically, this is using the counit ♮A→ A, because x : A in the context is semantically ♮A, but
A as a type on the right is semantically just A. We intentionally use the same raw syntax for these
two distinct typing rules VAR-MARKED and VAR-ROUNDTRIP, one of which uses a variable that is
marked in the context (via the counit), and the other uses a variable that is unmarked in the context
(via the roundtrip). This allows precomposition with the unit Γ→ Γ to be a “silent” operation that
leaves the raw syntax unchanged.

Finally, we have admissible structural rules corresponding to precomposing a judgement with
the unit Γ→ Γ and counit Γ→ Γ. We now discuss in more detail the admissible rules in play.

‘Natural’ on Contexts Marking a context Γ is defined inductively by marking all of the variables in
a context. Semantically, these equations build into the theory (roughly — there are some subtleties
with dependency that we discuss below) that ♮1 = 1, ♮(Γ.A) = ♮Γ.♮A (which are the equations
of a strict CwF morphism [Dyb96, Definition 2]) and that ♮(Γ.♮A) = ♮Γ.♮A (which is reasonable
because we intend for ♮ to be idempotent). The equation states that the Γ operation on contexts
is idempotent—syntactically, Γ has only marked variable declarations which Γ leaves unchanged
(and the A operation on terms discussed next is also idempotent).

Putting together CTX-EXT-MARKED and VAR-MARKED and the definition of Γ, the types of later
marked variables can mention earlier unmarked ones, but can only use them marked. For example,
in a context x : A, y : B, the type B is in context x : A ≡ x : A, so may refer to x (but not x).

Marking: Precomposition with the Counit. As mentioned above, we will often be interested in
types and terms where every use of a free variable is marked. We call such types and terms dull.
A dull term in context Γ is equivalently a term in the context Γ—because all the variables in Γ are
marked, any term Γ ⊢ a : A necessarily uses these variables marked. We can turn any Γ ⊢ a : A into
a dull term Γ ⊢ a : A by marking all the free variable uses in a with an underscore (MARK). (Recall
that we overload the notation and write the a operation on general terms using the same syntax
as for marked/roundtripped variables.) Semantically, a is precomposing a with the counit Γ→ Γ.
Because the type A also depends on Γ, substitution by the counit will also mark all its free variables,
giving A. We think of types as elements of a universe, so Γ ⊢ A : U implies Γ ⊢ A : U is another
instance of this rule. This means that when a term is marked i.e. only varies over the underlying
space of the context, its type will also only vary over the underlying space of the context.

We delay a formal definition of a on raw syntax until we have introduced the further extensions
of this type theory in later sections. The operation is given by recursion over the term syntax (like
substitution), turning each variable usage x into x, leaving marked variable uses unchanged, and
proceeding recursively otherwise (e.g. f (a) = f (a)). In particular, marking commutes with the
type former for Id-types: (x = y) ≡ (x = y), which is part of what makes our modality left-exact.

One subtlety is that, because a is semantically substitution/precomposition with the counit
Γ→ Γ, it marks the free variables of a term, but leaves the bound variables the same. For example,
λx. f x ≡ λx. f x. This leads to the full form of the operation in MARK, which marks the variables in
Γ in the context and changes all occurrences of the Γ-variables in the term into marked ones, but
does not change the occurrences of ∆-variables in the term. Formally, ∆ is a telescope (context in
context), but we omit the rules for Γ ⊢ ∆ tele, with formation rules analogous to those for contexts,
and the operation of concatenating a context and a telescope Γ, ∆. For example, with f in Γ and x in
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∆ we would calculate f x = f x. However, when the variables declared in Γ occur in the types in ∆,
those occurrences must be marked, which we notate with ∆mΓ. The telescope ∆mΓ is defined by
sending x : A to x : AmΓ (not x : AmΓ, differing from Γ) and x : A to x : A (since all variables are
already marked) for each variable in ∆. Officially, we should be annotating the underscores like aΓ
to indicate which variables in a are to be marked, but when we use this operation informally we
always start with Γ being all free variables and ∆ empty, so we adopt a convention that a means to
mark all free variables of a.

The equations for precomposition with the counit state that if a term starts out in Γ, then
marking has no effect and a ≡ a. Syntactically, this is because a term in context Γ cannot have any
unmarked free variable uses, which are the only parts of a term changed by the marking operation.
Note that this equation needs Γ ≡ Γ to typecheck, and semantically corresponds to the counit
Γ→ Γ being the identity. Consequently, marking is idempotent: a ≡ a.

Mark-weakening: Precomposition with the Unit. There is an analogous operation of precompo-
sition with the unit Γ→ Γ. Following [GSB19], we make this a “silent” operation, i.e. it does not
change the raw syntax of the term or the type, only the typing derivation, as stated in MARKWK.
We refer to as use of the unit as “mark-weakening” a piece of the context, because variables that
are marked in the context Γ in the premise become unmarked in the conclusion. The unit does not
unmark the uses of the variables in a term or type — a use x of a marked variable x : A from Γ
(typed by VAR-MARKED, which is the counit ♮A→ A) becomes a use x of x : A from Γ (typed by
VAR-ROUNDTRIP, which is the roundtrip A → ♮A → A, the counit precomposed with the unit).
Thus, the unit can be silent because we use the same syntax for the counit on marked variables as
for the roundtrip on unmarked variables.

To work up to the rule in the figure, the most basic form, where Ψ and ∆ are empty, says that
any Γ ⊢ a : A is also Γ ⊢ a : A. For the same reasons as for the counit, we will need a tail telescope
∆ that is not “mark-weakened” by the operation (i.e. the marks in ∆ in the premise are still there
in the conclusion), for inductively pushing this operation under bound variables, which are not
mark-weakened (and indeed, might not even be marked in the premise). We will also sometimes
find it useful to mark-weaken a variable in the middle of the context, without mark-weakening
its prefix, e.g. going from Γ, x : A ⊢ J to Γ, x : A ⊢ J . Semantically, this is precomposition with
the unit A → ♮A paired with the identity substitution on Γ. It is an implicit requirement for the
judgement in the conclusion to be well-formed that Ψ, Γ, ∆ is a well-formed context

Precomposition with the Roundtrip. Composing MARKWK and MARK, we have a rule ROUNDTRIP

representing precomposition with the non-trivial roundtrip Γ→ ♮Γ→ Γ. (We have not seen a use
for a counit rule with a prefix Ψ as in the unit rule, so we do not include one, and consequently
restrict the roundtrip to the setting where both the unit and counit exist, when Ψ is empty for the
unit.) The section-retraction property of a bireflection states that composing MARKWK and MARK

in the other direction, i.e. going from Γ ⊢ a : A to Γ ⊢ a : A to Γ ⊢ a : A should be the identity;
because the unit is silent, this is the same as the counit equation a ≡ a.

Returning to the rule VAR-ROUNDTRIP, the type A in the conclusion is typed by ROUNDTRIP,
because, as for the counit, precomposing/substituting by the roundtrip on Γ substitutes into the
type A as well. Because variable uses x : A and x : A (in general) have different types, the marked-
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♮-FORM
Γ ⊢ A : U
Γ ⊢ ♮A : U

♮-INTRO
Γ ⊢ a : A

Γ ⊢ a♮ : ♮A
♮-ELIM

Γ ⊢ b : ♮A

Γ ⊢ b♮ : A

♮-BETA
Γ ⊢ a : A

Γ ⊢ a♮♮ ≡ a : A
♮-ETA

Γ ⊢ b : ♮A

Γ ⊢ b ≡ b♮♮ : ♮A

Figure 1.2: Rules for ♮

ness of a variable usage cannot be naı̈vely flipped at will in a term. For example, if x : A then x = x
may not be well-formed, as A is not in general the same type as A. The only reason that we do not
need to analogously mark the type A in the conclusion of VAR-MARKED as A is that the marked
context extension CTX-MARKED ‘pre-marks’ the type — the type A is in context Γ, so must already
use only marked variables.

Well-formedness of the Conclusions. Whenever we can form a term Γ ⊢ a : A, we of course
want that Γ ctx and Γ ⊢ A : U . (Depending on precisely how the type theory is set up, these are
sometimes presuppositions of the term judgement; later when checking that MARK and MARKWK

are admissible in Section 3.2, we follow [Str91] in having them be consequences of the term
judgement.) There are few spots in the above rules where it is a little subtle why these invariants are
maintained. First, in VAR-MARKED, we have by CTX-EXT-MARKED that Γ ⊢ A : U , but for the use of
A on the right, we need Γ, x : A, Γ′ ⊢ A : U . In addition to the usual weakening with x : A, Γ′, this
uses MARKWK. In VAR-ROUNDTRIP, we have Γ ⊢ A : U , so by another application of ROUNDTRIP,
we also have Γ ⊢ A : U , so all that is needed is the usual weakening. In the definition of Γ for
unmarked variables, we begin with Γ ⊢ A : U , and need Γ ⊢ A : U , which we have by MARK (with
∆ empty). In the definition for marked variables, we start with Γ ⊢ A : U , and need Γ ⊢ A : U to
apply CTX-EXT-MARKED, which holds by idempotence. In the equation a ≡ a, we need the same
equation on types to see that A ≡ A, and similarly for the a ≡ a equation.

Substitution for Marked Variables. There is a new case of standard substitution for substituting
into VAR-ROUNDTRIP, which is defined by

x[a/x] :≡ a

That is, when we substitute a term a : A for a marked variable usage x, the result is the marking of
a. This type checks for Γ, x : A ⊢ x : A and Γ ⊢ a : A because the ROUNDTRIP rule gives Γ ⊢ a : A.
Semantically, x is the roundtrip A→ ♮A→ A, and the substitution post-composes this roundtrip
with a; but a is a pre-composed with the roundtrip Γ→ ♮Γ→ Γ, and these are equal by naturality
of the unit and counit.

1.1.2 Type Former

Using this judgement structure, it is now simple to describe the ♮ type using the rules in Figure 1.2.
Recall that we refer to a term/type in context Γ, i.e. a term/type all of whose free variables are

marked, as dull. The formation rule says that for any dull type A there is a type ♮A. Formally, this
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formation rule is analogous to ♯ in spatial type theory or dependent right adjoints [BCMEPS20], in
that it asks for a type under the left adjoint of ♮A, which in this case is also ♮, represented by Γ. One
alternate rule that one could imagine is like ♭ in spatial type theory, Γ ⊢ A : U implies Γ ⊢ ♮A : U .
However, this rule breaks admissibility of precomposition with the unit, because it forces variables
in the conclusion’s context to be marked.

The introduction rule says that for any dull term of a dull type a : A there is a term a♮ : ♮A,
again transposing ♮ on the right to ♮ on the left (roughly, ♮Γ→ A implies Γ→ ♮A). This is the same
as the introduction rule for ♯ and dependent right adjoints. Note that the type A must be assumed
to be dull for the type ♮A in the conclusion to be well-formed.

The elimination rule says that for any (not necessarily dull) term b : ♮A, there is a term b♮ : A.
Semantically, this is the counit ♮A→ A precomposed with b. Note that the type A must be assumed
to be dull for ♮A in the premise to be well-formed — for a non-dull type A, we have a counit
♮A→ A, but in general we do not have a map ♮A→ A.

The computation or β-reduction rule says that a♮♮ ≡ a. Whenever the left-hand side is well-
typed, the right-hand side is too, because of the silent unit rule MARKWK. Note that a is necessarily
dull for the ♮-INTRO rule to have been applied, and all of its free variables are still marked on the
right.

The uniqueness or η-rule says that b ≡ b♮♮ for any term b : ♮A. Since b is not necessarily dull,
it must be marked (precomposed with the counit) before being used in the introduction rule −♮.
One must be cautious in applying this rule from right to left, as not every possible ‘unmarking’ of a
term b will be well-typed.

For a non-dull type Γ ⊢ A : U , note that A (given by applying MARK) and ♮A are very different.
In parameterised spectra, A is A with its dependency on the fibres of the context Γ replaced by the
sections of Γ. On the other hand, ♮A also replaces the fibres of A itself with the trivial spectrum.
For example, if A is a closed type then A ≡ A ̸≃ ♮A. From this point of view, our notation Γ for
marking a context is confusing, because it semantically is ♮Γ; however, we use this notation to
emphasise that it is implemented by “underlining all of the variables in Γ”.

We have not proved canonicity or normalisation for the ♮ type, as our intended applications
rely on many axioms, but we conjecture they are true: the equations for Γ and a are proved rather
than asserted, and the ♮ type has a β rule for weak head reduction and a type-directed η rule.

Remark 1.1.1. When working informally, we will often assume a dull/marked variable x : A,
which has the same meaning as assuming a variable x : ♮A and then working with x♮ : A. Using a
dull variable by writing x is a bit terser than writing x♮, and substitution into x with some term a
does not need to go through the β-reduction a♮♮ ≡ a.

Remark 1.1.2. Because ♮ is adjoint to itself, there was a choice here about whether to axiomatise it
as left adjoint or right adjoint to the judgemental marking operation. We choose the right adjoint, as
this permits us to easily have a judgemental uniqueness rule as well as a judgemental computation
rule. It is not difficult to show that the rules for ♮ as a left adjoint are derivable; we do so in
Proposition 1.1.23.
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1.1.3 Properties of the Modality

First, we now develop the basic structure of the ♮ type internally, proving that ♮ behaves like both
the ♭ and ♯ modalities of spatial type theory [Shu18].

Definition 1.1.3 (Unit and counit for ♮). The introduction and elimination rules immediately give,
for any type A, unit and counit maps

ηA :≡ (λx.x♮) : A→ ♮A

εA :≡ (λn.n♮) : ♮A→ A

The fact that we only have a counit for dull types is what defeats the ‘no-go theorem’ for
comonadic modalities [Shu18, Theorem 4.1]. In general, there is no way to go from a term of ♮A or
A to a term of the non-marked type A.

Proposition 1.1.4. The counit and unit are a section-retraction pair, i.e. the roundtrip ηA ◦ εA : ♮A →
A→ ♮A is the identity. The composite εA ◦ ηA : A→ ♮A→ A is equal to λx.x.

Proof. For n : ♮A we have
η(ε(n)) ≡ n♮

♮ ≡ n♮
♮ ≡ n

by the definition of and the η-law. For the composite on x : A, we get

ε(η(x)) ≡ x♮♮ ≡ x

by the β-law.

Definition 1.1.5. We can define the functorial action of ♮ on a map, in any ambient context: given
f : A→ B we define ♮ f : ♮A→ ♮B by:

♮ f (x) :≡ [ f (x♮)]♮

yielding a map (A→ B)→ (♮A→ ♮B). When f is λy.y we get

♮(λy.y)(x) ≡ [(λy.y)(x♮)]♮ ≡ [(λy.y)(x♮)]♮ ≡ (x♮)♮ ≡ x

When f is f2 ◦ f1 we first have

♮( f2 ◦ f1)(x) ≡ [( f2 ◦ f1)(x♮)]♮ ≡ [( f2 ◦ f1)(x♮)]♮ ≡ [ f2( f1(x♮))]♮

But we also have

(♮( f2) ◦ ♮( f1))(x) ≡ ♮( f2)([ f1(x♮)]♮) ≡ [ f2(([ f1(x♮)]♮)
♮
)]♮ ≡ [ f2(([ f1(x♮)]♮)♮)]♮ ≡ [ f2( f1(x♮))]♮

So ♮ f preserves identity and composition definitionally.

Remark 1.1.6. Note that, in contrast with ♭ of spatial type theory, we do not need the function f to
be ‘crisp’, i.e., only use modal variables. Here, we can turn any function f : A → B into a ‘crisp’
one f : A→ B by marking, allowing us to apply ♮-INTRO to f (x♮) : B.
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The η-rule for ♮A implies that any term of natural type is equal to the marked version of it:

Proposition 1.1.7. For any dull type Γ ⊢ A : U and not necessarily dull term Γ ⊢ a : ♮A there is a
definitional equality Γ ⊢ a ≡ a : ♮A

Proof. Suppose a term Γ ⊢ a : ♮A. By the η-rule, we have a ≡ a♮♮. But applying the admissible rule
ROUNDTRIP, we have Γ ⊢ a : ♮A (using the fact that A ≡ A because A is dull). Applying the η-rule
to that gives a ≡ a

♮
♮. But n ≡ n.

Semantically, this is because, for any f : Γ → ♮A, the composite with the roundtrip Γ →
♮Γ → Γ → ♮A is still equal to f — first, use naturality of the unit/counit to see this is equal to
Γ→ ♮A→ ♮♮A→ ♮A and then the latter two maps are inverse by idempotence of ♮.

Proposition 1.1.8. The unit and counit are natural, so for any f : A→ B the diagrams

A B

♮A ♮B

f

ηA ηB

♮ f

♮A ♮B

A B

♮ f

εA εB

f

commute.

Proof. On the left:
f ((a♮)♮)♮ ≡ f (a)♮ ≡ f (a)♮

On the right:
( f (x♮)♮)♮ ≡ f (x♮) ≡ f (x♮)

We now consider types that are equivalent to their ‘underlying space’.

Definition 1.1.9. A type A is modal if the unit ηA : A→ ♮A is an equivalence. We define

Space :≡ ∑(X:U )isEquiv(λx.x♮)

for the type of modal types.

This definition is studied in detail in [HoTTBook, Definition 7.7.5],[RSS20, §1]. In the intended
model, the modal types are the spaces, embedded in PSpec as a space equipped with the constant
zero family of spectra. We will sometimes need to restrict statements to such spaces, so it is
important that we can carve out a subuniverse of spaces using the modality.

Proposition 1.1.10. If A is modal then A is also modal.

Proof. Given a witness w : isModal(A), we have w : isModal(A), showing A ≃ ♮A.

Proposition 1.1.11. For any A, the type ♮A is modal.
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Proof. The counit (λz.z♮) : ♮♮A → ♮A is an inverse to the unit (λv.v♮) : ♮A → ♮♮A. Using
Proposition 1.1.7, for the roundtrip on ♮A we have

v♮♮ ≡ v ≡ v

and for the roundtrip on ♮♮A we have

z♮♮ ≡ z♮♮ ≡ z.

Note that the unit and counit are not in general an equivalence between ♮A and A — the use of
the η-law to prove v ≡ v does not apply in A. Intuitively, ♮A is the base space of A, while A itself
only zeroes out the dependence of A on the ambient context. However, we do have:

Proposition 1.1.12. A type A is modal iff (λx.x) : A→ A is an equivalence.

Proof. Suppose λx.x : A → A is an equivalence, with inverse g : A → A. We show that ηA is a
quasi-equivalence, which can be improved to an equivalence. The inverse is g ◦ εA : ♮A→ A. For
x : A, we have

g[(x♮)♮] ≡ g(x) = x

using the inverse law for g ◦ (λx.x).
For the other composite, let (λx.x, g, w) : A ≃ A, so that w is the witness that (λx.x) and g are

inverses. Now observe that (λx.x, g, w) : A ≃ A and by definition of , the maps are λx.x and g, so
we also have g ◦ (λx.x) = idA. Then, for y : ♮A, the composite is

g(y♮)
♮ ≡ [g(y

♮
)]♮ ≡ ((λx.x♮) ◦ g ◦ (λx : A.x))(y♮) = (λx.x♮)(y♮) ≡ (y

♮
)♮ ≡ y

Conversely, if A is modal then A is also modal by Proposition 1.1.10. By the β-law, the map
(λx.x) : A → A is equal to the composite εA ◦ ηA : A → ♮A → A, which is the composite of two
equivalences. First, ηA is an equivalence because A is modal. Second, εA is an equivalence, because
it is left-inverse to ηA, which is an equivalence because A is modal, and a left-inverse of a map that
is an equivalence is its inverse.

Corollary 1.1.13. A dull type A is modal iff x = x for any x : A.

Proof. By function extensionality, (λx.x) = (λx.x), and transporting the fact that the identity
function is an equivalence along this allows us to use Proposition 1.1.12.

In the remainder of this section we show that ♮ has all the properties of both ♭ and ♯ from spatial
type theory.
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1.1.4 Monadic Properties

We begin with the monadic properties; those shared with ♯.

Proposition 1.1.14 (Monadic ♮-induction, cf. [Shu18, Theorem 3.4]). Suppose P : ♮A→ U is a type
family such that each P(v) is modal. Given a dependent function f : ∏x:A P(x♮), there is g : ∏v:♮A P(v)
such that g(x♮) = f (x) for all x : A.

Proof. Because each P(v) is modal, we have inverses rv : ♮P(v)→ P(v). So it is enough to produce
a function g′ : ∏v:♮A ♮P(v). Marking f gives a function f : ∏x:A P(x♮), which we can use to define

g′(v) :≡ f (v♮)♮

and g′(v) has type ♮P(v♮♮) ≡ ♮P(v) as required. To get the goal function g : ∏v:♮A P(v) we then
post-compose with rv:

g(v) :≡ rv( f (v♮)♮)

This has the correct computation property:

g(x♮) ≡ rv( f (x♮♮)♮) ≡ rv( f (x)♮) ≡ rv( f (x)♮) = f (x)

as rv is an inverse of (λx.x♮).

Theorem 1.1.15 (Monadic universal property, cf. [Shu18, Theorem 3.6]). Suppose B : ♮A→ U is a
type family with each B(v) modal. Then precomposition with ηA : A→ ♮A is an equivalence

∏(v:♮A)B(v) ≃ ∏(x:A)B(x♮)

Proof. The inverse is given by monadic ♮-induction (Proposition 1.1.14), and the roundtrip on
f : ∏(x:A) B(x♮) is exactly the g(x♮) = f (x) equation given above.

For the other composite, suppose h : ∏(v:♮A) B(v), and y : ♮A, and we need to show that h(y)
is equal to the g(y), for the g determined by monadic ♮-induction on h-precomposed-with-ηA,
λx.h(x♮). However, by the η-law, y ≡ (y

♮
)♮, so

g(y) ≡ g((y
♮
)♮) = h((y

♮
)♮) = h(y)

(This proof is morally doing another monadic ♮-induction to reduce y to something of the form
x♮, but we have not yet proved that b =B(y) b′ is modal when B(y) is modal, so we cannot use
Proposition 1.1.14 directly, but instead η-expand explicitly.)

Corollary 1.1.16. (λA.♮A) : U → U with unit λx.x♮ : A → ♮A is a monadic modality in the sense
of [RSS20].

Proof. The precomposition equivalence

∏(v:♮A)♮B(v)→ ∏(x:A)♮B(x♮)

of the previous proposition, where ♮B is modal by Proposition 1.1.11, is precisely the definition of a
‘uniquely eliminating modality’ [RSS20, Definition 1.2], one of the several equivalent definitions of
a monadic modality.
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Being a monadic modality has many formal consequences. In particular:

Lemma 1.1.17 (Properties of a modality, [RSS20]). The following all hold for ♮:

1. A is modal iff (λx.x♮) : A→ ♮A admits a retraction.

2. If the input types are modal then all the following are modal:

1 A× B x =A y fib f (x) B×A C A ≃ B

3. If A is any type and P : A → U is such that every P(x) is modal, then ∏(x:A) P(x) is modal. If
additionally A is modal, then ∑(x:A) P(x) is modal.

4. For any types A and B, the canonical map ♮(A× B)→ ♮A× ♮B is an equivalence.

5. If A is a proposition, then so is ♮A.

Also like ♯, the ♮ modality preserves Σ-types and is left-exact.

Proposition 1.1.18 (♮ preserves Σ). For types A : U and B : A→ U , we have

♮
(

∑(x:A)B(x)
)
≃ ∑(u:♮A)♮B(u♮)

Proof. We know that the right-hand side is modal, so to define a map from left-to-right it is
sufficient to provide f : ∑(x:A) B(x)→ ∑(u:♮A) ♮B(u♮) and then apply ♮-induction. For this we have
f (a, b) :≡ (a♮, b♮).

The other way, we are provided u : ♮A and v : ♮B(u♮), with which we can produce

(u♮, v♮)♮ : ♮
(

∑(x:A)B(x)
)

.

To show the roundtrip on the left is the identity, suppose v : ♮
(

∑(x:A) B(x)
)

. By ♮-induction

(=♮ is modal by Lemma 1.1.17) we assume this is of the form (a, b)♮, and then the round trip is just

(a♮♮, b♮♮)♮ ≡ (a, b)♮ ≡ (a, b)♮

by the β-rule for ♮.
For the other roundtrip, starting with (u, v) : ∑(u:♮A) ♮B(u♮), the computation rule for ♮-induction

gives that the roundtrip is equal to

f (u♮, v♮) ≡ (u♮
♮, v♮♮) ≡ (u, v)
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Proposition 1.1.19 (♮ is left-exact, cf. [Shu18, Theorem 3.7]). For x, y : A, there is an equivalence
(x♮ = y♮) ≃ ♮(x = y) such that

(x♮ = y♮)

(x = y)

♮(x = y)

ap
(−)♮

(−)♮

commutes

Proof. We can define maps both ways by:

c 7→ ap(−)♮(c♮) : ♮(x = y)→ (x♮ = y♮)

p 7→ (ap(−)♮(p))♮ : (x♮ = y♮)→ ♮(x = y)

For showing the roundtrip on c : ♮(x = y) is the identity, first, for any type A with x, y : A and
p : x =A y, we have ap(λx.x)(p) = p as paths in x =A y (which type checks because x = x). By path
induction, it suffices to show

ap(λx.x)(reflx) ≡ ap(λx.x)(reflx) = reflx ≡ reflx

Then we have

[ap(−)♮(ap(−)♮(c♮))]
♮ ≡ [ap(−)♮(ap(−)♮(c♮))]

♮ = [ap((−)♮)♮(c♮)]
♮ ≡ [ap−(c♮)]

♮ = [c♮]
♮ ≡ [c♮]

♮ ≡ c

The other direction is easier: the roundtrip on p is:

ap(−)♮(ap(−)♮(p)♮♮)

≡ ap(−)♮(ap(−)♮(p))

= ap(−)♮♮(p)

≡ apid(p)

= p

= p

The last equality is by Lemma 1.1.13 and that p : (x♮ = y♮) is a term of a dull modal type.
The triangle commutes by path-induction:

ap(−)♮(ap(−)♮(reflx))
♮ = ap(−)♮♮(reflx)

♮

= (reflx)
♮

≡ (reflx)
♮
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Left-exactness has some additional formal consequences outlined by [RSS20].

Proposition 1.1.20. The following hold for ♮:

1. ♮ preserves pullbacks, [RSS20, Theorem 3.1].

2. ♮ preserves n-types and more generally n-truncated maps for all n, [RSS20, Corollary 3.9].

1.1.5 Comonadic Properties

Now we turn to the comonadic properties of ♮; the properties it shares with the ♭ modality of spatial
type theory. First, as remarked in Section 1.1, we can derive a substitution principle of dull terms
for dull variables:

Definition 1.1.21 (Dull substitution). The dull substitution principle is

SUBST-DULL
Γ, x : A ⊢ c : C Γ ⊢ a : A

Γ ⊢ c[a/x] :≡ c[a/x] : C[a/x]
−−−−−−−−−−−−−−−

To see that this type checks, precompose with the unit on A to get Γ, x : A ⊢ c : C and the unit on Γ
to get Γ ⊢ a : A, and then a normal substitution c[a/x] has type C[a/x] ≡ C[a/x].

Remark 1.1.22. Definition 1.1.21 corresponds to the substitution principle for crisp variables in
spatial type theory, where a crisp variable can be substituted by a term containing only crisp
variables. In our setting, given a term a in a general context, we can mark it and then substitute it
for a dull variable:

Γ, x : A ⊢ c : C Γ ⊢ a : A

Γ ⊢ c[a/x] ≡ c[a/x] : C[a/x]
−−−−−−−−−−−−−−−

Because Γ ⊢ a : A is a dull term, we can use SUBST-DULL. This is equal to the ordinary substitu-
tion c[a/x] because all of the uses of x in c and C must be marked, so a will be marked during
substitution; we can prove inductively that

Γ, x : A ⊢ c : C Γ ⊢ a : A

Γ ⊢ c[a/x] ≡ c[a/x] : C[a/x]
−−−−−−−−−−−−−−−

Proposition 1.1.23 (Comonadic ♮-induction). A ♭-style eliminator is derivable for ♮:

“♭”-ELIM
Γ, x : ♮A ⊢ C : U Γ ⊢ v : ♮A Γ, u : A ⊢ c : C[u♮/x]

Γ ⊢ (let u♮ = v in c) : C[v/x]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

“♭”-BETA
Γ, x : ♮A ⊢ C : U Γ ⊢ v : A Γ, u : A ⊢ c : C[u♮/x]

Γ ⊢ (let u♮ = v♮ in c) ≡ c[v/u] : C[v♮/x]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Proof. The eliminator can be derived by dull substitution:

(let u♮ = v in c) :≡ c[v♮/u]

which has type C[v♮♮/x] ≡ C[v/x] as required. The β-rule follows immediately from the β-rule for
♮, using the fact that v ≡ v for Γ ⊢ v : A, as all variable uses in v are already marked.

This induction principle can be rephrased as a characterisation of maps out of ♮A.

Theorem 1.1.24 (Comonadic universal property, cf. [Shu18, Theorem 6.16]). For any A, B : U ,
post-composition (and functoriality of ♮) with (−)♮ : ♮B→ B induces an equivalence

♮(♮A→ ♮B) ≃ ♮(♮A→ B)

or more dependently, for A : U and B : ♮A→ U , fibrewise post-composition (and functoriality of ♮) with
(−)♮ : ♮B(v)→ B(v) yields an equivalence

♮
(

∏(v:♮A)♮B(v)
)
≃ ♮

(
∏(v:♮A)B(v)

)
Proof. The counit map ♮B(v)→ B(v) is always a section of the unit map, so the post-composition
map in the statement of the Theorem is also a section.

We just have to check that the roundtrip on ♮
(

∏(v:♮A) B(v)
)

is the identity. Suppose we have

an f : ♮
(

∏(v:♮A) B(v)
)

. Unfolding the definition of post-composition and functoriality of ♮ with
both the unit and the counit is:

(λx.( f
♮
(x))♮♮)♮ ≡ (λx.( f

♮
(x)))♮

≡ (λx.( f
♮
(x)))♮

≡ ( f
♮
)♮

≡ f

where x ≡ x : ♮A by Proposition 1.1.7. Note that (λx.( f
♮
(x)))♮ is well-typed, as x is not free below

the ♮-INTRO, so does not need to be marked.

Because the rules for ♭ are derivable, we could instead have repeated the proof for ♭ verbatim,
but the above is more direct.

Remark 1.1.25. One may wonder why the applications of ♮ are required around the two sides.
Thinking syntactically, they are necessary to block access to ‘spectral’ information from the context.
Without ♮ on the right, one could use a b : B in the context to form constant functions constb : ♮A→
B which have no corresponding maps ♮A→ ♮B on the left.

Another way to see that they are necessary is to consider the model in families of pointed types,
looking ahead to Section 3.3. There, it is clear that the map is not an equivalence without the ♮

present: E(♮A→ ♮B) is equivalent to the point in every fibre, but E(♮A→ B) may be non-trivial.
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Corollary 1.1.26 (Dull Self-adjointness). For any A, B : U there is an equivalence

♮(A→ ♮B) ≃ ♮(♮A→ B)

Proof. Combining the monadic and comonadic universal properties we get

♮(A→ ♮B) ≃ ♮(♮A→ ♮B) ≃ ♮(♮A→ B)

Proposition 1.1.27 (cf. [Shu18, Theorem 3.11]). In the presence of univalence, the type Space of modal
types is modal.

Proof. Recall that Space :≡ ∑(A:U ) isModal(A). We can use a simpler proof than the one used for ♯.
By Corollary 1.1.13, we just have to show that for any A : U and w : isModal(A), there is an equality
(A, w) = (A, w). And there is: by assumption A is modal so A ≃ A, again by Corollary 1.1.13. In
the second component, isModal(A) is a proposition, so we are done.

Remark 1.1.28. When working with inductive types in a theory with more structured contexts
such as ours, one has to make sure that the induction principles are strong enough. In spatial
type theory, one needs to assert or prove ‘crisp induction principles’, for when the motive of
an elimination rule depends on a crisp variable of type being eliminated. The crisp induction
principle for a type constructor is a judgemental way of saying that the modality preserves the
type constructor. For example, crisp coproduct case analysis is a judgemental way of saying that
♭(A + B) ≃ ♭A + ♭B, because the crisp induction principle gives crisp variables of type A + B the
same universal property as an ordinary variable of type ♭A + ♭B. In our setting, a dull induction
principle for coproducts looks like:

DULL-+-ELIM

Γ, z : A + B ⊢ C : U
Γ, x : A ⊢ p : C[inl(x)/z] Γ, y : B ⊢ q : C[inr(y)/z]

Γ ⊢ s : A + B

Γ ⊢ dullcase(z.C, x.p, y.q, s) : C[s/z]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

In spatial type theory, crisp induction principles are proven using the adjointness of ♭ and ♯, and
because ♮ is self-adjoint, we could repeat the proof almost verbatim. But we can show they are
valid more directly, using the MARK and MARKWK rules.

With the above inputs, we can apply MARKWK to obtain

Γ, z : A + B ⊢ C : U
Γ, x : A ⊢ p : C[inl(x)/z]

Γ, y : B ⊢ q : C[inr(y)/z]

Γ ⊢ s : A + B

Now note that C[inl(x)/z] ≡ C[inl(x)/z] and C[inr(x)/z] ≡ C[inr(x)/z], because z is only used
marked in C, as in Remark 1.1.22. These inputs are now of the right shape to apply the ordinary
+-ELIM rule.
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Using an analogous construction, we can derive dull induction principles for Id-types, pushouts,
etc.

Proposition 1.1.29 (♮ preserves pushouts). Suppose f : C → A and g : C → B are dull functions
between dull types. Then

♮(A +C B) ≃ ♮A +♮C ♮B,

the pushout of ♮ f : ♮C → ♮A and ♮g : ♮C → ♮B.

Proof. Morally, this follows because we just proved that ♮ is a left adjoint, but we can also write out
the maps explicitly as follows.

From left-to-right, we extract a term of p : A +C B, and then do case analysis. On a : A, we have
inl(a♮) : ♮A +♮C ♮B. Similarly, on b : B we have inr(b♮) : ♮A +♮C ♮B. To complete the cocone we have
to provide for any c : C, a path inl( f (c)♮) = inr(g(c)♮) in ♮A +♮C ♮B. The glue constructor for the
♮A +♮C ♮B pushout gives us a path

glue(c♮) : inl(♮ f (c♮)) = inr(♮g(c♮))

And this type is equal to inl( f (c)♮) = inr(g(c)♮) by the definition of the functorial action of ♮, and
the β-rule.

The right-to-left direction is similar. We begin with case analysis on z. On n : ♮A and m : ♮B
we have inl(n♮) : A +C B and inr(m♮) : A +C B respectively. For any o : ♮C, we need a path
inl(♮ f (o)♮) = inr(♮g(o)♮). Expanding the definition of functoriality and applying the β-rule, this is
a path

inl( f (o♮)) = inr(g(o♮))

and glue(o♮) is such a path in A +C B. All together this produces a dull term of A +C B, so applying
♮-INTRO we are done.

Checking the roundtrips are the identity is straightforward, using comonadic ♮-induction and
dull pushout induction, which can be derived as in Remark 1.1.28.

The sequential colimit (see e.g. [SDR20]) of a sequence

A(0)
a(0)−−→ A(1)

a(1)−−→ A(2)
a(2)−−→ . . .

is given by the higher inductive type colim An with point and path constructors

ι : ∏(n:N)A(n)→ colimn An

κ : ∏(n:N)∏(x:A(n))ι(n + 1, a(n, x)) = ι(n, x)

Proposition 1.1.30 (♮ preserves sequential colimits). Suppose we have a diagram

A(0)
a(0)−−→ A(1)

a(1)−−→ A(2)
a(2)−−→ . . .
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of dull types and dull functions between them. Then

♮(colimn A(n)) ≃ colimn ♮A(n)

where the sequential colimit on the right is over the diagram

♮A(0)
♮a(0)−−→ ♮A(1)

♮a(1)−−→ ♮A(2)
♮a(2)−−→ . . .

Proof. The proof is analogous to that for pushouts.

1.1.6 Discussion

Remark 1.1.31. In spatial type theory [Shu18], there is also a special context extension x :: A, which
is a judgemental version of extending the context with ♭A. Such variables are called crisp. A usage
of a crisp variable x in a term corresponds to a use of the counit ♭A → A, like our VAR-MARKED

rule. Because there is only a counit and not also a unit, the type A of a crisp variable x :: A is only
permitted to depend on other crisp variables. A loose way to think about this is as follows. Before
we have access to any structural rules, dependency forces us to apply modalities to an entire context
at once. Given a type-in-context Γ ⊢ A : U presented as a fibration p : A → Γ, ordinary context
extension corresponds to considering the object A as a context. If we want to make A discrete, we
have to apply ♭ to everything, giving ♭p : ♭A→ ♭Γ. So ♭A can only depend on a discrete context,
and the judgemental version x : A has the same restriction. Therefore, all crisp variables must occur
before regular ones, and the context naturally divides into two zones. In our system, however, the
presence of the unit map A→ ♮A means that we can no longer neatly divide the context in this way.
For example, if we have a context x : A, y : B, then we can precompose with the unit substitution
just on x, giving x : A, y : B. This breaks the invariant that crisp variables all occur before ordinary
ones.

Remark 1.1.32. A substitution principle for marked variables that is typical from other comonadic
type theories following [PD01] is

Γ, x : A, Γ′ ⊢ b : B Γ ⊢ a : A

Γ, Γ′[a/x] ⊢ b[a/x] : B[a/x]
−−−−−−−−−−−−−−−−

Here, the term being substituted must already have all of its variables marked, as indicated by
the premise Γ ⊢ a : A of the rule, and this substitution principle is implemented by a syntactic
substitution, replacing x with a everywhere. Given the admissible rules in Figure 1.1, we can in
fact define this by first mark-weakening the variable x to get Γ, x : A, Γ′ ⊢ b : B and then doing
an ordinary substitution b[a/x]. Since all uses of x will be marked x in b and B, this will replace
x with a everywhere—but since Γ ⊢ a : A, we have a ≡ a, so we get the same result as the more
specialised principle would have given.

We prefer this style of presenting substitution, where the substitution for marked variables is
given by unmarking and then ordinary substitution, because it corresponds more closely to what
we will do when working informally in this type theory. When performing substitutions b[a/x]
by hand, we can simply look in b for each instance of x and x and replace them with either a or
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a accordingly, without having to mentally keep track of the context through each subterm to see
whether x is marked or not (variables that are not marked become marked in the premises of some
rules), as we would have to do if substitution for a marked variable required pre-marking the term.
This is another benefit of having VAR-MARKED and VAR-ROUNDTRIP rules be identical raw syntax.
In our experience trying different systems for this setting, this choice seems critical for the usability
of the system for informal type theory.

1.2 Palettes and Contexts

Supporting ⊗- and ⊸-types will require a more radical change to the way contexts are structured.
In this section we describe this new structure. The rules of the type theory described in the previous
section will turn out all be derivable in this larger theory, and so we refer to the theory of the
previous section as the ‘♮-fragment’.

We extend our theory in a manner similar to the way the αλ-calculus extends the ordinary
λ-calculus, as part of work on bunched logics [OP99; OHe03]. Bunched logics capture semantic
situations where there are two independent symmetric monoidal products on a category. One
product is typically assumed to be the ordinary cartesian product, but little is assumed about the
other monoidal product besides symmetry. The αλ-calculus [OHe03; Pym02] is a term calculus for
bunched logic, with cartesian product ×, monoidal product ⊗ and corresponding function types
→ and ⊸.

Contexts in ordinary type theory can be written as flat lists because any finite product of objects
can be reassociated in a canonical way. Once there are two monoidal products, neither of which
distributes over the other, combinations of objects using these operations cannot in general be
flattened to a list. We must therefore consider contexts with a tree structure.

We present a fragment of the αλ-calculus in Figure 1.3. There are two binary context formers:
the comma denotes combining two contexts in the ordinary cartesian way, and the ⊗ combining in
a linear way1. Weakening and contraction of the ordinary cartesian comma are explicit rules used
in the derivation of a term, and contexts are considered up to an equivalence relation containing
symmetry, associativity and unitality for both products. The judgement Γ{∆} used in WK and
CONTR indicate that the context ∆ appears somewhere as a subtree of the context Γ. The explicit
structural rules are required, because the conclusions of the ‘splitting’ rules→-ELIM and ⊸-ELIM

are not fully general: instead, the conclusions are exactly the (judgemental) cartesian product or
monoidal product of the contexts in the premises. If the user wishes to use function application of
either kind while building a derivation for a term, they may have to invoke the explicit structural
rules in complicated ways to massage the context into the correct form.

These context manipulations are not recorded in the terms, so typechecking a term can be
difficult. First, it is not always obvious when and how the contraction rule has to be applied, and
secondly, it is not always obvious how the context has to be split into two pieces to apply ⊸-ELIM.
Besides the challenge of typechecking, the combination of the weakening rule and the rules for the
monoidal unit also breaks soundness for the intended semantics (we discuss this in Remark 1.4.1).

1We have replaced some symbols of the αλ-calculus to be more consistent with MLTT and the system are about
to present. The type formers ×, ⊗,→ and ⊸ are typically called ∧, ∗,→ and −∗ respectively. For forming contexts,
typically ; denotes cartesian combination and , linear combination.
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A type

x : A ctx

Γ ctx ∆ ctx

Γ, ∆ ctx

Γ ctx ∆ ctx

Γ⊗ ∆ ctx

VAR
x : A ⊢ x : A

WK
Γ{∆} ⊢ a : A

Γ{∆, ∆′} ⊢ a : A
CONTR

Γ{∆, ∆′} ⊢ a : A ∆ ∼= ∆′

Γ{∆} ⊢ a[∆/∆′] : A[∆/∆′]

→-INTRO
Γ, x : A ⊢ b : B

Γ ⊢ λx.b : A→ B
→-ELIM

Γ ⊢ f : A→ B ∆ ⊢ a : A

Γ, ∆ ⊢ f (a) : B

⊸-INTRO
Γ⊗ (x : A) ⊢ b : B

Γ ⊢ ∂x.b : A ⊸ B
⊸-ELIM

Γ ⊢ f : A ⊸ B ∆ ⊢ a : A

Γ⊗ ∆ ⊢ f ⟨a⟩ : B

Figure 1.3: Selected Rules of the αλ-calculus.

The various extensions of the αλ-calculus that have since appeared [BO06; CPR08; SS04; Atk04] do
not resolve these issues. It is also not so clear how to add dependent types to this system and how
dependency should behave between bunches.

We have some desiderata for an extension of MLTT with such bunched contexts, if we are
aiming for a type theory that is usable by hand:

• Weakening and symmetry of the context should be silent on raw terms,

• Contraction (of the cartesian context former) should be admissible, including contraction of
entire pieces of context and not just pairs of variables,

• Substitution should traverse the term ‘to the leaves’, in particular there should be no stuck
explicit substitutions. It should also be easily computable by hand, and as far as possible be
defined by syntactic substitution of raw terms.

• Determining which variables are permitted to be used should be easy at any position in a
term.

• Any label bound in a term should be named, so nameless techniques like de Bruijn indices
should be avoided.

• Typechecking should be syntax-directed, so no proof search or similar is necessary to type-
check terms.

These properties are all taken for granted when working in ordinary MLTT, but only some of these
are maintained in the αλ-calculus. A new strategy is necessary!
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In the αλ-calculus, the shape of a context and the types appearing in the context are described
simultaneously. The new idea is to track the shape of the context separately from the types using a
book-keeping tool that we call a palette.

Linearity requirements are tracked by labelling each variable with a ‘colour’, and the palette
describes how these colours relate to each other. Context splits that are required in rules like
⊸-ELIM can be specified just by referring to the palette, not the variables. This separation between
the context and the bunched structure has a couple of advantages. The primary benefit is that
weakening, contraction, and the various monoidal symmetry/associativity rules can be made
admissible. Like ordinary type theory, weakening and symmetry are invisible operations on the
level of raw terms. Having individual labels to refer to large pieces of the context also makes the
syntax more compact.

Before introducing the new judgemental structure and types formally, we give a few examples
of how our theory feels to use informally:

Proposition 1.2.1. Given two closed types A and B, there is a function symA,B : A⊗ B→ B⊗ A.

(When we revisit this map in Proposition 1.3.5 we will relax the requirement that A and B are
closed types.)

Proof. Just as in ordinary type theory, we introduce an assumption p : A⊗ B by λ-abstraction and
now have to prove B⊗ A. To break apart the assumption p : A⊗ B into its two pieces, we use
⊗-induction. This produces two new assumptions xr : A and yb : B, where x and y have been
labelled with two new colours r and b. The colours r and b give names to the sides of a tensor
product r⊗ b. The fact that x and y are labelled by r and b is placing them on the corresponding
sides of this tensor.

These new assumptions are not immediately available to be used in a term: right now we cannot
conclude A from x or B from y. What ‘unlocks’ these new assumptions is a use of ⊗-introduction.
To form a term of B⊗ A, we must linearly split the palette into two disjoint pieces, one of which
we use to form an element of B and the other to form an element of A. Now assigning b to the B
side we have y : B, and assigning r to the A side we have x : A, so we can form y ⊗b r x : B⊗ A.

In all, we have described the term

symA,B :≡ λp.(let x ⊗r b y = p in y ⊗b r x) : A⊗ B→ B⊗ A

In Proposition 1.3.5 we will show that this is an equivalence. Note that the arrow→ used here is
the ordinary function type, and so the introduced p is an ordinary variable. The linear type formers
create ordinary types that can be used just like any other; there is no separation between linear and
ordinary types.

This ⊗ is a positive type former, and like other positive type formers in dependent type theory,
a propositional uniqueness principle is provable from the computation rule.

Proposition 1.2.2. Suppose A and B are closed types, C : A ⊗ B → U is a type family and f :
∏(p:A⊗B) C(p). For any p : A⊗ B we have

(let x ⊗r b y = p in f (x ⊗r b y)) = f (p)
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Proof. Let P : A⊗ B→ U denote the type family

P(p) :≡ (let x ⊗r b y = p in f (x ⊗r b y)) = f (p)

We wish to find an element ∏(p:A⊗B) P(p), so by ⊗-induction it is enough to assume p ≡
x′ ⊗r′ b′ y′ where r′ ⊗ b′ is a new split of our top colour. Here we choose different colour labels to the
ones we mention in the statement of the Proposition: those labels are bound in the definition of P.

Our new goal is

(let x ⊗r b y = x′ ⊗r′ b′ y′ in f (x ⊗r b y)) = f (x′ ⊗r′ b′ y′)

In the body of the let, “ f (x ⊗r b y)”, there are two different tensors of colours in scope: the r′ ⊗ b′

from the outer induction, and the r⊗ b from the inner induction. These are completely independent,
and in particular are not combined with each other using a further ⊗.

The computation rule for ⊗-induction lets us reduce the left endpoint of the path by syntactically
substituting the variables x′ and y′ for x and y as normal, and also substituting the labels r′ and b′

for r and b. This gives the goal

f (x′ ⊗r′ b′ y′) = f (x′ ⊗r′ b′ y′)

for which we have refl f (x′ ⊗
r′ b′y

′).

There is no need for ‘linear identity types’: ordinary identity types are sufficient.
As a final example, we show that the syntax builds in a way to use the nonlinear information of

any variable. Recall that ♮A is supposed to represent the nonlinear aspect of A.

Proposition 1.2.3. Given two closed types A and B, there is a function baseA,B : A⊗ B→ ♮A× ♮B.

Later a similar map appears when we show that ♮ is monoidal in that it sends ⊗ to × (Proposi-
tion 1.3.21).

Proof. As in the definition of the symmetry map, we start by introducing p : A⊗ B and applying
⊗-induction to give xr : A and yb : B. Now, to form a term of A, we use the assumption x in a
special way, that we call a marked usage, written x : A. We can then use ♮-introduction to form
x♮ : ♮A. Doing the for y lets us form

baseA,B :≡ λp.(let x ⊗r b y = p in (x♮, y♮)) : A⊗ B→ ♮A× ♮B

1.2.1 Rules for Palettes

We now describe the syntactic gadget used to keep track of these colour labels. On its own, a palette
Φ describes a particular kind of binary tree, where each node is tagged with either a cartesian
product × or a tensor product ⊗. Palettes have no semantic interpretation on their own; they
describe a shape that is later filled by the variables of the context. (In particular, although they
will be written as a context ‘zone’, they are not really a piece of context in the sense of spatial type
theory, or the special interval variables in cubical type theory.)
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In a palette, children of a ×-node are separated by a comma and children of a ⊗-node by the
symbol ⊗.

Any ×-node can be given a label. We require that these labels are all distinct across the entire
tree. We call these label colours, and write Φ ⊢ c colour for the judgement picking out a single label2.
Each variable in the context will be assigned one of these labels, which corresponds to adding that
variable as a child of the corresponding × node.

A typical palette may look like as follows:

t ≺ (a⊗ b, c⊗ d) palette

This corresponds to the following tree:

t ≡ ×

⊗

d ≡ ×c ≡ ×

⊗

b ≡ ×a ≡ ×

The ≺ symbol is supposed to invoke something splitting into pieces, and doesn’t denote an order
on colours.

Palettes can be nested in arbitrary ways. For example, starting with the palette t ≺ (a ⊗
b) palette, we might like for the a labelled ×-node to itself contain a ⊗-node. We write this as

t ≺ ((a ≺ p⊗ q)⊗ b) palette,

which corresponds to the tree

t : ×

⊗

b ≡ ×a ≡ ×

⊗

q ≡ ×p ≡ ×

The a labelled ×-node could have a second ⊗-node for a child r⊗ s. This is written using a comma,
as it was at the top level:

t ≺ ((a ≺ p⊗ q, r⊗ s)⊗ b) palette

giving the tree

2A reference for the more peculiar Fraktur letters: w ≡ w, x ≡ x, y ≡ y, z ≡ z.
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PAL-EMPTY
1 palette

PAL-×
Φ1 palette Φ2 palette

Φ1, Φ2 palette

PAL-UNIT
∅ palette

PAL-⊗
Φ1 palette Φ2 palette

Φ1 ⊗Φ2 palette
PAL-COL

Φ palette

c ≺ Φ palette

Figure 1.4: Rules for Palette Formation

COL-HERE
c ≺ Φ ⊢ c colour

COL-SUB
Φ ⊢ c colour

t ≺ Φ ⊢ c colour

COL-×-LEFT
Φ1 ⊢ c colour

Φ1, Φ2 ⊢ c colour
COL-×-RIGHT

Φ2 ⊢ c colour

Φ1, Φ2 ⊢ c colour

COL-⊗-LEFT
Φ1 ⊢ c colour

Φ1 ⊗Φ2 ⊢ c colour
COL-⊗-RIGHT

Φ2 ⊢ c colour

Φ1 ⊗Φ2 ⊢ c colour

Figure 1.5: Rules for Colours

t ≡ ×

⊗

b ≡ ×a ≡ ×

⊗

s ≡ ×r ≡ ×

⊗

q ≡ ×p ≡ ×

As well as labels and the binary palette formers, there are two special unary symbols: 1,
representing the terminal object, and ∅, representing the monoidal unit. The 1 palette will be used
when ‘marking’ a term as part of the rules for ♮: pieces of the palette will be replaced with 1.

The rules for constructing palettes are given in Figure 1.4. To cut down on notation, we write r

as a shorthand for r ≺ 1, we have used this already in the preceding examples.

Colours. As mentioned above, a colour Φ ⊢ c colour is a single label in the palette, formally given
by the rules of Figure 1.5. Ordinary variables in the type theory will each be labelled by a colour.
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CTX-EMPTY
Φ palette

t ≺ Φ | · ctx
CTX-EXT

Φ ⊢ c colour

Φc | Γc ⊢ A type

Φ | Γ, xc : A ctx
CTX-EXT-MARKED

r | Γ ⊢ A type

t ≺ Φ | Γ, xr : A ctx

VAR
t ≺ Φ | Γ, xt : A, Γ′ ⊢ x : A

VAR-ROUNDTRIP
t ≺ Φ ⊢ c colour

t ≺ Φ | Γ, xc : A, Γ′ ⊢ x : At↔c

VAR-MARKED
t ≺ Φ | Γ, xc : A, Γ′ ⊢ x : At↔c

Figure 1.6: Rules for Context Formation and Variable Usage.

1.2.2 Rules for Contexts and Variables

Contexts in our theory have the form Φ | Γ ctx where Φ palette. We require that the palette
associated with a term always has a label at the top level, so t ≺ Φ | Γ ⊢ a : A. The rules for context
formation and variable usage are given in Figure 1.6.

Context Extension. There are two ways to extend a context with a variable: either ‘colourful’ or
‘marked’. These are analogous to the ordinary and marked context extensions of the ♮-fragment.
The difference is that the variables are now also labelled with a colour which further restricts how
they can be used.

• Colourful Context Extension. A ‘colourful’ context extension t ≺ Φ | Γ, xc : A ctx denotes an
assumption whose linear data is accessible. The Φ ⊢ c colour label describes where this linear
data is positioned relative to the rest of the context: the data is placed in the ×-node labelled
c.

The superscript on xc should be thought of as a part of the syntax of context extension, not as
a part of the variable name. The superscript does not appear on the variable x when it is later
used in a term. (We might write x :c A if it weren’t so ugly!)

The type A assigned to x must be well-formed in the palette (t ≺ Φ)c, which is the subpalette
rooted at the label c, with the variables Γ marked to match: we describe this process below in
the section on ‘filtering’.

As a special case of colourful context extension, we have ordinary context extension when we
use the colour that is at the top of the palette, as in

t ≺ Φ | Γ, xt : A.

Here, A is a type in the context t ≺ Φ | Γ without any changes, as we will see that (t ≺ Φ)t ≡
t ≺ Φ and Γt ≡ Γ.

• Marked Context Extension. A ‘marked’ context extension t ≺ Φ | Γ, xc : A ctx denotes an
assumption whose linear data is not accessible. It corresponds semantically to extending
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Γ with the underlying space of A, i.e. ♮A. The c label here does not come from the palette:
instead it is bound in this context extension. When a variable becomes marked, its connection
to the ambient palette is completely severed.

The type A in such a context extension must be ‘dull’, i.e. all uses of variables from Γ in A
must be marked uses, and nor can it use any colours form Φ: the palette is cleared to c, using
the top colour label that the extension is annotated with.

As in the ♮-fragment of the theory, there are three variable rules.

• Ordinary Usage. We can use a colourful variable xt : A in the ordinary way via the VAR rule
if the colour t of the variable is precisely the label at the top of the palette.

• Roundtrip Usage. Any colourful variable xc : A can be used marked via VAR-ROUNDTRIP,
regardless of what colour that variable is labelled with. As in the previous section, the result
is a variable usage whose type has had the marking operation applied to it.

By the form of colourful context extension, the type A is in a context that has c as the top
colour, so the marked type A also has c as the top colour. We a further admissible rule (−)t↔c

to obtain a type in the correct context t ≺ Φ | Γ ctx.

• Marked Usage. Any marked variable xc : A can be used, regardless of what colour the
marked variable is labelled with.

Here, A is already a marked type, so all that is necessary is to apply the same operation
(−)t↔c to obtain a type in t ≺ Φ | Γ ctx.

The raw syntax for VAR-ROUNDTRIP and VAR-MARKED continues to be identical, so that the
‘mark-weakening’ rule MARKWK acts invisibly on terms.

We have used various admissible rules in these context and variable rules, and we display these
rules in Figure 1.7.

Marking a Context. As in the ♮ fragment of the theory, there is an operation on contexts Γ that
turns every context extension with a marked context extension, also clearing the palette other than
the top colour. Semantically, this is still applying ♮ to the context Γ.

Filtering a Context. A new ingredient in the present system is a more refined marking of the
context that picks out all the variables whose colour lies in a particular part of the palette. Whenever
we have a colour Φ ⊢ c colour, we can filter the palette to that colour, extracting the ‘subpalette’
headed by that colour as a new palette Φc palette. For example, using the palette from earlier we
have

(t ≺ (a ≺ p⊗ q, r⊗ s)⊗ b)t ≡ t ≺ (a ≺ p⊗ q, r⊗ s)⊗ b

(t ≺ (a ≺ p⊗ q, r⊗ s)⊗ b)a ≡ a ≺ p⊗ q, r⊗ s

(t ≺ (a ≺ p⊗ q, r⊗ s)⊗ b)p ≡ p

(t ≺ (a ≺ p⊗ q, r⊗ s)⊗ b)b ≡ b
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Marking contexts:

CTX-MARK
t ≺ Φ | Γ ctx

t | Γ ctx
−−−−−−−

· :≡ ·
Γ, xc : A :≡ Γ, xc : A

Γ, xc : A :≡ Γ, xc : A

t ≺ Φ | Γ ctx

Γ ≡ Γ
−−−−−−−

Filtering contexts:

PAL-FILTER
Φ ⊢ c colour

Φc palette
−−−−−−−

Φ ⊢ c colour Φc ⊢ d colour

(Φc)d ≡ Φd palette
−−−−−−−−−−−−−−−−

CTX-FILTER
Φ ⊢ c colour Φ | Γ ctx

Φc | Γc ctx
−−−−−−−−−−−−−−

(·)c :≡ ·
(Γ, xd : A)c :≡ Γc, xd : A if d ∈ Φc

(Γ, xd : A)c :≡ Γc, xd : A if d /∈ Φc

(Γ, xd : A)c :≡ Γc, xd : A

t ≺ Φ | Γ ctx t ≺ Φ ⊢ c colour

Γc ≡ Γ
−−−−−−−−−−−−−−−−−−

t ≺ Φ | Γ ctx t ≺ Φ ⊢ c colour (t ≺ Φ)c ⊢ d colour

(Γc)d ≡ Γd
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Marking terms:

MARK
t ≺ Φ | Γ ⊢ J

t | Γ ⊢ J
−−−−−−−−

Palette-weakening and mark-weakening:

PALWK

t | Γ ctx

t | Γ ⊢ J

t ≺ Φ | Γ ⊢ J
−−−−−−−− MARKWK

t ≺ Φ | Γ ctx

t | Γ ⊢ J

t ≺ Φ | Γ ⊢ J
−−−−−−−−

Colour renaming:

RECOLOUR
r ≺ Φ | Γ ⊢ J

t ≺ Φ | Γt↔r ⊢ J t↔r
−−−−−−−−−−−

Figure 1.7: Admissible Rules for Marking Contexts and Terms.
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The associated operation on contexts Φc | Γc ctx, which we also call filtering, marks all variables
(and their associated types) whose labels are not in Φc. The variables whose labels are in Φc are left
unmarked, and their types untouched.

For example, letting

Φ :≡ t ≺ (a ≺ (p⊗ q, r⊗ s))⊗ b

Γ :≡ xt : X, ya : Y, zp : Z, ur : U, vb : V

we can calculate

Φt | Γt ≡ t ≺ (a ≺ p⊗ q, r⊗ s)⊗ b | xt : X, ya : Y, zp : Z, ur : U, vb : V

Φa | Γa ≡ a ≺ p⊗ q, r⊗ s | xt : X, ya : Y, zp : Z, ur : U, vb : V

Φp | Γp ≡ p | xt : X, ya : Y, zp : Z, ur : U, vb : V

Φb | Γb ≡ b | xt : X, ya : Y, zp : Z, ur : U, vb : V

Semantically, this filtering operation should correspond to extracting the ⊗ factor of Γ corre-
sponding to the colour r. So, if we have r⊗ b | Γ, then it should be the case that Γ ∼= Γr ⊗ Γb.

Marking a Term. As in the ♮-fragment, an important class of terms is those where every free
variable is used via a marked variable usage, and we continue to call these ‘dull’ terms. In the
present system this means that the palette is only used in a trivial way.

A dull term in t ≺ Φ | Γ ctx is equivalently a term in the marked context t | Γ ctx. The shape of
the variable rules means that any use of the variables in Γ must be via a use of VAR-MARKED, but
the term also may not use any colours in the palette Φ: the palette is completely cleared other than
the top colour t. This accords with dull terms as denoting points in the base space: such points do
not depend on any linear information from the context whatsoever. Bound variables may still be
used in an ordinary way: for example, the identity function (λx.x) is dull.

The MARK rule allows us to take any term t ≺ Φ | Γ ⊢ a : A and produce a dull term
t ≺ Φ | Γ ⊢ a : A by replacing every variable usage in a with a marked variable usage, and
replacing all colour labels from Φ mentioned in a with the special symbol 1. Semantically, this is
precomposition with the counit ♮(Φ | Γ)→ (Φ | Γ).

In the marking operation, it is not enough to pick a palette Φ and mark all variables whose
colours lie in that palette. The ordinary cartesian type formers bind new variables of the current
top colour, and any uses of these new bound variables should not become marked.

There is no equivalent of filtering for terms: this operation is all-or-nothing on the variable uses
in a term. Semantically, there is typically no morphism Φs → Φ to pre-compose by.

Mark-weakening a Term. We can also take a term defined in a marked context and perform
‘mark-weakening’, adding resources back to the context that are not used in the term, corresponding
semantically to precomposition with the unit (Φ | Γ)→ ♮(Φ | Γ). This is done by the admissible
MARKWK rule and, as in the ♮-fragment, this is a silent operation on raw syntax.
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Well-formedness of the Conclusions. We briefly argue that the conclusions of the above rules
are well-formed.

• CTX-MARK: For colourful context extensions xc : A, the type is well-formed in context
Φc | Γc ctx. The marking operation gives c | Γc ⊢ A type, and

Γc ≡ Γ ≡ Γ

by combining the two equations in the figure. This makes the marked context extension
t | Γ, xc : A ctx well-formed.

For already marked context extensions xc : A, the type A is well-formed in context c | Γ ctx

and Γ ≡ Γ by the same equation, so t | Γ, xc : A ctx is well-formed.

• CTX-FILTER: Similar to the previous. The new case is when a colourful context extension
xd : A is in the palette Φc being filtered to, and so remains unmarked in the conclusion. This
time Φd | Γd ⊢ A type, but the two displayed equations give (Φc)d ≡ Φd and (Γc)d ≡ Γd.
These are exactly what is required for Φc, xd : A ctx to be well-formed.

• VAR: The type A is well-formed in context (t ≺ Φ)t | Γt ctx. By the definition of filtering,
(t ≺ Φ)t ≡ t ≺ Φ and Γt ≡ Γ, because every colour used in Γ is certainly in t ≺ Φ. The
conclusion of VAR then weakens this type to include the further context extensions xt : A, Γ′.

• VAR-ROUNDTRIP: The type A is well-formed in context Φc | Γc ctx, which typically is not
equal to the context in the conclusion. The marking operation gives us a type

c | Γc ⊢ A type.

The equation in the figure gives that Γc ≡ Γ, and applying colour renaming,

t | Γ ⊢ At↔c type

Finally, MARKWK followed by ordinary weakening gives

t ⊢ Φ | Γ, xc : A, Γ′ ⊢ At↔c type

and so the conclusion is well-formed.

• VAR-MARKED: This is similar, but we instead start with

c | Γ ⊢ A type

and so no marking of A is required. Applying the same mark-weakening and variable
weakening as above gives

t ⊢ Φ | Γ, xc : A, Γ′ ⊢ At↔c type
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Π-FORM

t ≺ Φ | Γ ⊢ A type

t ≺ Φ | Γ, xt : A ⊢ B type

t ≺ Φ | Γ ⊢ ∏(x:A) B type

Π-INTRO
t ≺ Φ | Γ, xt : A ⊢ b : B

t ≺ Φ | Γ ⊢ λx.b : ∏(x:A) B
Π-ELIM

t ≺ Φ | Γ ⊢ f : ∏(x:A) B type

t ≺ Φ | Γ ⊢ a : A

t ≺ Φ | Γ ⊢ f (a) : B[a/x]

SUBST
t ≺ Φ | Γ ⊢ a : A t ≺ Φ | Γ, xt : A, Γ′ ⊢ J

t ≺ Φ | Γ, Γ′[a/x] ⊢ J [a/x]
−−−−−−−−−−−−−−−−−−−−−−−−

Figure 1.8: Rules for Π-types

1.2.3 Ordinary Type Formers

The type formers of MLTT have their rules imported almost unchanged. A generic context Γ is
replaced with a generic palette/context pair t ≺ Φ | Γ, and any variables bound in the rules are
bound with the top colour t as their label. Figure 1.8 gives the example of Π-types.

Our theory contains all of MLTT as a fragment (in any fixed palette), and so all the results
provable in ordinary HoTT will also be available to us. The only possible concern is that the
admissible weakening and substitution rules used in the ordinary MLTT rules somehow behave
differently here. In the fragment of the theory without any of the new type formers, single variable
substitution a/xt is defined on raw syntax exactly as it is usually: we scan the term for each
occurrence of the variable x and syntactically replace it with a. This continues to hold when the
judgement being substituted into includes the new term and type formers of our theory: the
structure of the rules ensures that the result is well-formed.

Once the term a itself involves the new type formers, there is a caveat involving terms that
contain the top colour label. For the moment, we add the side-condition that the top colour label t
does not appear in the term a.

Remark 1.2.4. These ordinary cartesian type formers are the reason that we always need a name
for the top colour available, as at any point in a term we might go under a cartesian variable binder.
There are design trade-offs for how this top colour is handled, and this choice touches almost every
aspect of the judgemental structure. We discuss these trade-offs in Section 3.1.2.

1.2.4 The Modality

The rules for ♮ are given in Figure 1.9, and are essentially the same as in the ♮-fragment. We may
apply ♮-FORM to any ‘dull’ type, and similarly for ♮-INTRO and dull terms. Recall however that
marking a term is slightly more complicated in the present theory: beyond marking all the free
variables, all the free colours in a term must also be replaced with 1.

We import all the results of Section 1.1 into the present type theory.
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♮-FORM
t | Γ ⊢ A type

t ≺ Φ | Γ ⊢ ♮A type

♮-INTRO
t | Γ ⊢ a : A

t ≺ Φ | Γ ⊢ a♮ : ♮A
♮-ELIM

t ≺ Φ | Γ ⊢ a : ♮A

t ≺ Φ | Γ ⊢ a♮ : A

♮-BETA
t | Γ ⊢ a : A

t ≺ Φ | Γ ⊢ a♮♮ ≡ a : A
♮-ETA

t ≺ Φ | Γ ⊢ v : ♮A

t ≺ Φ | Γ ⊢ v ≡ v♮♮ : ♮A

Figure 1.9: Rules for the Natural Modality.

1.2.5 Working Informally

When working informally, we propose to take the palette and colour metaphor literally, assigning
an actual colour to each ‘colour’ in the palette and painting each variable in that colour. We already
demonstrated this in our initial examples for the ⊗-type. Ignoring the types of the variables for a
moment, we might have a context

p ≺ r⊗ b | xr : A, yb : B, zp : C ctx

Variables are also painted in their associated colour at each point they are used. It will be easy to
see that the colour annotation on each variable is never changed as we move up a derivation, so
different usages of the same variable will always be written in the same colour.

In the above context, only the variable z is usable, because the top colour of the palette is purple:

p ≺ r⊗ b | xr : A, yb : B, zp : C ⊢ z : C

When using the theory, it is important to keep track of what the current top colour is to know which
variables are usable. We think of a term in the above context as a ‘purple term’: its immediate
subterms are either also purple or produced by rules that allow combining other colours to form
purple.

Writing the variable uses in colour at their points of use has no syntactic meaning, because
whenever we can use a variable via the ordinary VAR rule, there is only one way to do so. Using
colours in this way has a couple of advantages, however. Firstly, it makes it easier to keep track of
which colour each variable is labelled with, which is important when working informally as the
current state of the context is not immediately visible in the middle of a term.

Secondly, it allows us to tell at a glance whether a term is well-formed. Working in the above
context, if we see a ‘colour clash’ (y, z) : B × C as a subterm, then we know that the term is
not well-typed and we have made a mistake somewhere. This becomes more interesting when
typechecking an instance of ⊗-INTRO or ⊸-ELIM. We will discuss how to use these informally
once the rules have been presented.

Finally, using colours is fun! It is satisfying to see the colours line up nicely when completing a
proof.
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Marked Variables and Uses. Using colours works nicely with marked variables and marked
variable usages. Marked variables do not interact with the colours in the palette, so we write them
in black in the context and at all usage points. Ordinary colourful variables are also written in black
when they are used marked. Recall that these marked usages are permitted no matter what the
current top colour is, for example, we have purple terms (x, z) : A× C and (y, z) : B× C.

When using some rules, like the formation rule for the modality ♮-FORM, the entire context
becomes marked in the premises. Working informally, this means that when we go under ♮-FORM,
we lose colourful access to all the variables in the context, so any use of these variables must be
marked. And so the provenance of terminology ‘dull’ is revealed: a dull term is one where all free
variables have no colour.

The top colour of the context is unchanged when going under ♮-FORM, which is relevant when
later going under a λ-binder, for example. The bound variable is still given the top colour of the
context, and so is permitted to be used immediately. For example, we import the following version
of Theorem 1.1.15, arbitrarily choosing the top colour to be purple.

Theorem 1.2.5 (Monadic universal property). Suppose B : ♮A→ U is a type family with each B(v) a
space. Then precomposition with ηA : A→ ♮A is an equivalence

∏(v:♮A)B(v) ≃ ∏(x:A)B(x♮)

Filtered Contexts. The informal interpretation of context filtering is that terms in a filtered context
must be ‘in the colour’ that the context was filtered to. As we saw in the introductory examples, a
use of ⊗-INTRO will allow us to form the term

p ≺ r⊗ b | xr : A, yb : B, zp : C ⊢ x ⊗r b y : A⊗ B

The annotations on ⊗r b specify the colour that the term on each side should be, so that the context
is filtered to r on the left and to b on the right. Working informally, this means that the term on
the left must ‘be red’, with all non-red variables used marked, and the term on the right must ‘be
blue’, with all non-blue variables used marked. The result is the ‘purple’ term x ⊗r b y. The colour
theory learned finger-painting as a toddler comes in useful: Here, the top colour is purple, which
can also be produced by combining red and blue. Throughout this work we make an effort to align
the colours in this way, so purple p is created by combining red r and blue b, orange o is given by
combining yellow y and red r, et cetera.

When filtering the context to a colour, we are permitted to keep any ‘subcolours’. Consider the
more complicated palette

w ≺ (o ≺ y⊗ r)⊗ b palette

(taken from Proposition 1.5.1). Then when producing an orange o term, we are still permitted to
use yellow y and red r variables.

Reviewing the rule for colourful context extension, the type of a r-coloured variable in the
context is required to be a type in context Φr | Γr ctx. Another way to say this is that the type of a
red variable xr should be a red type A in Φ | Γ ctx.

There are a couple of downsides. If the goal is to stick to additive colour mixing, then one only
has three primary colours available, and any use of three or more colours becomes an unpleasant
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shade of brown. In such situations we are better off sticking to explicit labels. It is also sometimes
unclear at the start of a proof which colours will need to be split into subcolours, causing some
retroactive ‘palette swapping’ once the best arrangement is determined.

Remark 1.2.6. Colours are often used when presenting a type theory to make symbols in different
syntactic classes more visually distinct, but the labelling of variables with ‘colours’ (and literally
colouring them accordingly) has also appeared previously in the Core Calculus of Coloured
Constructions [BG13]. The theory is designed to give the user control over erasure: different parts
of an expression can be assigned different colours and then erasing a colour deletes any part of the
expression ‘tainted’ with that colour, the rules arranged so that typing is preserved.

Interestingly, the filtering metaphor in their system works the opposite way to ours. When
combining two colour labels, they use additive rather than subtractive colour mixing, so blue + red
becomes magenta rather than purple. In CCCC, when erasing magenta one thinks of looking at the
term through a magenta filter: all the magenta subterms fade into the background and so disappear,
as do the red and blue subterms. In our system, we focus instead on what happens to all the other
colours: the filter makes them appear black.

1.3 Tensor

Our ⊗-type is a restricted version of the ordinary Σ-type so that to form a ⊗-pair, the two compo-
nents must divide the resources of the palette in a linear way. We call such a division a split. For the
first part of this section we will work with a simpler notion of split than the one we eventually use,
because we can make a surprising amount of progress with it.

For a palette Φ with two colours Φ ⊢ r colour and Φ ⊢ b colour we use a judgement Φ ⊢
r⊠ b split to mean that Φ has r tensored with b at the top level (possibly with some subpalettes Ψ1

and Ψ2 below them):

p ≺ Φ, (r ≺ Ψ1)⊗ (b ≺ Ψ2), Φ′ ⊢ l⊠ r split

A split can therefore use a tensor verbatim: a⊗ b ⊢ a ⊠ b split, and also builds in cartesian
projection: a⊗ b, c⊗ d ⊢ a⊠ b split. But there is no way to use both a on the left and c on the right
of a single split: a split must choose a single side of a comma to use.

Unfortunately, in general it will not be enough to refer to pieces of a palette described by a single
colour label. Already when proving associativity of ⊗, it will be necessary to have a collection of
colours from the palette on either side of a split. We defer the use of these ‘slices’ until Section 1.3.1.

The type A⊗ B is well-formed when the types A and B only depend on the nonlinear resources
of the context: syntactically A and B are required to be dull in the same sense as the previous
section. In fact, we generalise further and allow our tensor type to be dependent between the two
sides: the dull type B may depend on a marked variable x of type A. We write the dependent
tensor as⃝∑ (x:A) B, as a pun on the relationship between ⊗ and ×.

The rules for ⊗-types are given in Figure 1.10.

• Formation: Whenever we have a dull type A and a dull type B depending on x : A, we can
form the type⃝∑ (x:A) B. We write x : A rather than x : A in the syntax of the type to remind
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⊗-FORM
t | Γ ⊢ A type t | Γ, xt : A ⊢ B type

t ≺ Φ | Γ ⊢ ⃝∑ (x:A) B type

⊗-INTRO

t ≺ Φ ⊢ l⊠ r split

Φl | Γl ⊢ a : Al↔t Φr | Γr ⊢ b : B[a/x]r↔t

t ≺ Φ | Γ ⊢ a ⊗l r b :⃝∑ (x:A) B

⊗-ELIM

t ≺ Φ | Γ, zt :⃝∑ (x:A) B ⊢ C type

t ≺ Φ, l⊗ r | Γ, xl : Al↔t, yr : Br↔t ⊢ c : C[x ⊗l r y/z]
t ≺ Φ | Γ ⊢ s :⃝∑ (x:A) B

t ≺ Φ | Γ ⊢ let x ⊗l r y = s in c : C[s/z]

⊗-BETA

t ≺ Φ | Γ, zt :⃝∑ (x:A) B ⊢ C type

t ≺ Φ, l⊗ r | Γ, xl : Al↔t, yr : Br↔t ⊢ c : C[x ⊗l r y/z]
t ≺ Φ ⊢ l′ ⊠ r′ split

Φl′ | Γl′ ⊢ a : Al′↔t Φr′ | Γr′ ⊢ b : B[a/x]r
′↔t

t ≺ Φ | Γ ⊢ (let x ⊗l r y = a ⊗l′ r′ b in c) ≡ c[l′/l⊗ r′/r | a/x, b/y] : C[a⊗ b/z]

SUBST-⊗

t ≺ Φ ⊢ l′ ⊠ r′ split

Φl′ | Γl′ ⊢ a : Al′↔t Φr′ | Γr′ ⊢ b : B[a/x]r
′↔t

t ≺ Φ, l⊗ r | Γ, xl : Al↔t, yr : Br↔t ⊢ J

t ≺ Φ | Γ ⊢ J [l′/l⊗ r′/r | a/x, b/y]
−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 1.10: Rules for the Tensor Type (with Simple Splits)
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us that all uses of x in B must be marked. Similarly to ordinary Σ-types, in the case that B
does not depend on A we write A⊗ B.

• Introduction: If the ambient palette can be split into two colours l and r, with l proving
a : Al↔t and r proving b : B[a/x]r↔t, then there is a term a ⊗l r b of type⃝∑ (x:A) B.

It is typically obvious which split of the resources has been used in an occurrence of ⊗-INTRO,
just by inspecting how the variables appear marked or unmarked on both sides. When
working informally we will often leave these splits off, unless there is some ambiguity in
which split has been used. (Later we will come across examples where this happens.)

In the terms a : Al↔t and b : B[a/x]r↔t, the types are originally in palette t, and so have to
have their top colours renamed to the colour on the appropriate side of the split, so l or r

respectively. The types are then silently weakened via the MARKWK rule, giving types with
palette Φl and Φr respectively. It is for this reason that a : At↔l and b : B[a/x]t↔r are well
formed, even though the terms use linear resources from the context and the types do not.

Marking a term that contains a use of ⊗-intro is a situation which will require the more
general ‘slices’ of Section 1.3.1, so we will simply postpone any examples that require this
until after that section.

• Elimination: Any term p of⃝∑ (x:A) B may be assumed to be of the form x ⊗r b y, where x and
y are assigned fresh colours r and b that are tensored together as r⊗ b at the top level in the
ambient palette. We call this ⊗-induction.

Syntactically, if we have a target type C that depends on a variable zt : ⃝∑ (x:A) B and c :
C[x ⊗l r y/z] is a term that uses variables x and y as above, then for any p :⃝∑ (x:A) B we have
an induced term

let x ⊗l r y = p in c : C[p/z].

• Computation: If we perform ⊗-induction on a term that is actually already of the form
a ⊗l′ r′ b, then the result is the term c with a and b substituted for x and y, and the colours l′

and r′ substituted for the colours l and r, via the admissible SUBST-⊗:

(let x ⊗l r y = a ⊗l′ r′ b in c) ≡ c[l′/l⊗ r′/r | a/xl, b/yr] : C[a ⊗l′ r′ b/z].

On raw syntax, the operation on is implemented by plugging in l, r, a and b for the appropriate
variables in the term c, just as in ordinary substitution.

Remark 1.3.1. The rule for forming a split forbids us from forming a diagonal map A → A⊗ A.
Given an x : A, there is no split l⊠ r split such that x ⊗l r x is well-formed, as any split assigns p to
exactly one side.

Similarly, our variable rule forbids us from forming projection maps A ⊗ A → A. Given
p : A⊗ A, the term (let x ⊗r b y = p in x) is not well-formed, because x : A is not a well-formed
term with colour p.

Remark 1.3.2. We use the same symbol ⊗ to form the type as to introduce a term. This should
be familiar from working with the tensor product in ordinary algebra: there is not usually any
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confusion between the module M⊗ N and an element x⊗ y. There is a possible ambiguity if we
leave off the slices in the syntax of ⊗-INTRO: if A and B are types, then A⊗ B could mean either
A⊗ B : U via ⊗-FORM or A⊗ B : U ⊗ U via ⊗-INTRO. In this thesis there are no examples of the
latter meaning.

Remark 1.3.3. In an axiomatic style, our introduction rule would be:

t ≺ Φ, r⊗ b | Γ, xr : A, yb : B ⊢ axtensorx,y :⃝∑ (x:A) B

Our actual rule is obtained from this by building in an arbitrary substitution for the ‘telescope’
r⊗ b | xr : A, yb : B tele.

Remark 1.3.4. We can describe the shape of the ⊗-type former as a function into the universe. The
left type must be marked with respect to the ambient context, we can capture this internally as
asking for a term A : ♮U . The right type also must be marked with respect to the context, and can
also depend on A but only marked; this a type family A : ♮A♮ → ♮U . Given these inputs we can
form the dependent tensor, so the type former itself has type

“ ∑⃝” : ∏(A:♮U )(♮A♮ → ♮U )→ U

When positing a ⊗-type, it is a little cumbersome to suppose A : ♮U and B : ♮A♮ → ♮U , and then
work with the type⃝∑ (x:A♮)

(B(x♮))♮. Instead, we will usually assume A : U and B : A → U , and
work with⃝∑ (x:A) B(x). The type of B is not the most precise possible, because we could instantiate
B with a function that uses its argument x′ : A unmarked, and then apply B to x when forming the
⊗-type anyway. We accept this trade-off, because statement written this way are a lot neater.

With the ⊗-type now properly introduced, we prove some of its basic properties internally.
First, we can revisit the symmetry equivalence given in Proposition 1.2.1.

Proposition 1.3.5. For any dull types A and B, there is a symmetry equivalence symA,B : A⊗ B→ B⊗ A
whose inverse is symB,A.

The map in Proposition 1.2.1 was defined for A and B closed types, but exactly the same
definition can be used when they are instead only dull:

symA,B :≡ λp.(let xr ⊗ yb = p in y⊗ x).

To show that this is an equivalence, we will need the uniqueness principle for ⊗ which we
showed in Proposition 1.2.2. We also generalise this proposition to dull types, and allow B to
depend on x : A.

Proposition 1.3.6 (Uniqueness principle for ⊗). Suppose A and B : A → U are types. For any type
family C :⃝∑ (x:A) B(x)→ U , section f : ∏(p:⃝∑ (x:A) B(x)) C(p) and term p :⃝∑ (x:A) B(x) we have

(let x ⊗r b y = p in f (x ⊗r b y)) = f (p)

36



Proof. Let P : A⊗ B→ U denote the type family

P(p) :≡ (let x ⊗r b y = p in f (x ⊗r b y)) = f (p)

We wish to find an element ∏(p:A⊗B) P(p), so by ⊗-induction it is enough to assume p ≡
x′ ⊗r′ b′ y′ where r′ ⊗ b′ is a new split of our top colour.

Our new goal is

(let x ⊗r b y = x′ ⊗r′ b′ y′ in f (x ⊗r b y)) = f (x′ ⊗r′ b′ y′)

and reducing the left-hand side gives

f (x′ ⊗r′ b′ y′) = f (x′ ⊗r′ b′ y′)

for which we have refl f (x′ ⊗
r′ b′y

′).

The ⊗-induction that provides the colours r′ ⊗ b′ is placing the new split in a ×-bunch at the top
of the palette, so the new state of the palette is p ≺ (r⊗ b, r′ ⊗ b′). This means that, for example, the
variables x and x′ cannot interact directly, and the type x =A x′ is not well formed, even though x
and x′ are both of type A.

Proof of Proposition 1.3.5. Using the symmetry map twice gives:

symB,A(symA,B(p)) ≡
(
let y′b

′ ⊗ x′r
′
= (let xr ⊗ yb = p in y⊗ x) in x′ ⊗ y′

)
(The variables used in symB,A have been α-renamed to line up better with the result of symA,B.)

This expression does not judgmentally reduce, but it would if p were a term constructed by ⊗-
INTRO. To make this so, we use the uniqueness principle, which exposes a couple of opportunities
to apply the computation rule.

symB,A(symA,B(p)) = (let x′′r
′′
⊗ y′′b

′′
= p in symB,A(symA,B(x′′ ⊗ y′′))

≡ (let x′′r
′′
⊗ y′′b

′′
= p in symB,A(let xr ⊗ yb = x′′ ⊗ y′′ in y⊗ x))

≡ (let x′′r
′′
⊗ y′′b

′′
= p in symB,A(y

′′ ⊗ x′′))

≡ (let x′′r
′′
⊗ y′′b

′′
= p in (let y′b

′ ⊗ x′r
′
= y′′ ⊗ x′′ in x′ ⊗ y′))

≡ (let x′′r
′′
⊗ y′′b

′′
= p in x′′ ⊗ y′′)

= p

where we have ended by using the uniqueness principle in the other direction.

Definition 1.3.7 (Action of ⊗ on functions). Given dull f : A → A′ and g : B → B′, there is a
function

func( f , g) : A⊗ B→ A′ ⊗ B′

defined by
func( f , g) :≡ λp.let xr ⊗ yb = p in f (x) ⊗r b g(y).
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or dependently, if f : A→ A′ and g : ∏(x:A) B(x)→ B′( f (x)), there is

func( f , g) :⃝∑ (x:A)B(x)→⃝∑ (x:A′)B
′(x)

defined by
func( f , g) :≡ λp.let xr ⊗ yb = p in f (x) ⊗r b g(x)(y).

Proposition 1.3.8 (⊗ is functorial). If f : A → A′, f ′ : A′ → A′′ and g : B → B′, g′ : B′ → B′′, we
have

func( f ′ ◦ f , g′ ◦ g) = func( f ′, g′) ◦ func( f , g)

func(idA, idB) = idA⊗B

Proof. By function extensionality, we have to show

func( f ′ ◦ f , g′ ◦ g)(p) = (func( f ′, g′) ◦ func( f , g))(p)

for any p : A⊗ B. Using ⊗-induction, assume p ≡ x ⊗r b y, and then the left side reduces to

(func( f ′ ◦ f , g′ ◦ g)(x ⊗r b y) ≡ ( f ′ ◦ f )(x) ⊗r b (g′ ◦ g)(y)

≡ f ′( f (x)) ⊗r b g′(g(y))

and the right side reduces to

(func( f ′, g′) ◦ func( f , g))(x ⊗r b y) ≡ func( f ′, g′)(func( f , g)(x ⊗r b y))

≡ func( f ′, g′)( f (x) ⊗r b g(y))

≡ f ′( f (x)) ⊗r b g′(g(y))

so we have refl f ′( f (x)) ⊗r bg′(g(y)) as the required path. The path for (idA ⊗ idB) = idA⊗B is constructed
similarly.

Remark 1.3.9. There does not appear to be a useful version of functoriality where the functions are
used unmarked, although one can define a function(

(A→ A′)× A
)
⊗

(
(B→ B′)× B

)
→ (A′ ⊗ B′)

by functoriality.

For convenience, we define two maps that project the components of the base from any tensor.

Definition 1.3.10. For any A and B : A→ U , define

pr1 :⃝∑ (x:A)B(a)→ A

pr2 : ∏(p:⃝∑ (x:A) B(a))B(pr1(p))

by

pr1(p) :≡ let x⊗ y = p in x

pr2(p) :≡ let x⊗ y = p in y
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These functions clearly satisfy the computation rules pr1(x⊗ y) ≡ x and pr2(x⊗ y) ≡ y by the
computation rule for ⊗-induction. Put together, these give a canonical map to the base spaces.

Definition 1.3.11.

mon : ♮
(
⃝∑ (x:A)B(a)

)
→ ∑(x:♮A)♮B(x♮)

mon(p) :≡ ((pr1 p
♮
)♮, (pr2 p

♮
)♮)

The ⊗ type interacts with ♮ types in a convenient way.

Proposition 1.3.12 (♮ types float through ⊗). For dull types A, B, C, there are equivalences:

♮A× (B⊗ C) ≃ (♮A× B)⊗ C

A⊗ (♮B× C) ≃ (A× ♮B)⊗ C

A⊗ (B× ♮C) ≃ (A⊗ B)× ♮C

More dependently,

∑(x:♮A)⃝∑ (y:B(x))C(x, y) ≃ ⃝∑ ((x,y):∑(x:♮A) B(x))C(x, y)

⃝∑ (x:A)∑(y:♮B(x))C(x, y) ≃ ⃝∑ ((x,y):∑(x:A) ♮B(x))C(x, y)

⃝∑ (x:A)∑(y:B(x))♮C(x, y) ≃ ∑(w:⃝∑ (x:A) B(x))♮C(pr1w, pr2w)

Of course, in the simply typed case, the first equivalence immediately implies the other two by
symmetry of ⊗ and ×.

The intuition here is that if A is a space, the spectrum over each point of ♮A is trivial. So
considering the first equivalence, the spectrum over a point (a, (b, c)) : ♮A× (♮B× ♮C) on the left
is given by 1× (Bb ⊗ Cc), and over a point ((a, b), c) : (♮A × ♮B) × ♮C on the right is given by
(1× Bb)⊗ Cc, and these are obviously equivalent.

The colour of the variable introduced by the Σ-type is different on each side of the dependent
equivalences. This is a hint that the ♮ is necessary for the proof to go through: terms of ♮ type are
always judgmentally marked via Proposition 1.1.7, and are therefore ‘colourless’.

Proof. The maps are defined in the obvious ways using ⊗-induction. The critical step comes at
the end when checking the round-trips: we use that all terms of ♮ type are definitionally marked
(Proposition 1.1.7). For the first equivalence, this is

(x, y)⊗ z ≡ (x, y)⊗ z :⃝∑ ((x,y):∑(x:♮A) B(x))C(x, y)

(x, y⊗ z) ≡ (x, y⊗ z) : ∑(x:♮A)⃝∑ (y:B(x))C(x, y)

This interaction of the ♮ and ⊗ type formers also allows us to reconstruct the dependent ⊗-type
from a non-dependent ⊗-type.

Proposition 1.3.13. For any A : U and B : A→ U , there is an equivalence

⃝∑ (x:A)B(x) ≃ ∑(n:♮A)∑(p:A⊗B(n♮))
(n = pr1(p)♮)
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This might feel strange, but there is an analogous (and not very useful) equivalence for Σ-types

∑(x:A)B(x) ≃ ∑(x′ :A)∑((x,y):A×B(x′))(x′ = x)

which follows quickly from singleton contractibility.

Proof. For any A, there is an equivalence

A ≃ ∑(n:♮A)∑(x:A)(n = x♮)

given by singleton contractibility, and that n ≡ n. The equivalence then follows by pulling spaces
out of ⊗ (Proposition 1.3.12), because both ♮A and (n = x♮) are spaces:

⃝∑ (x:A)B(x) ≃ ⃝∑ ((n,x,e):∑(n:♮A) ∑(x:A)(n=x♮))B(n♮)

≃ ∑(n:♮A)⃝∑ ((x,e):∑(x:A)(n=x♮))B(n♮) (Proposition 1.3.12)

≃ ∑(n:♮A)⃝∑ (x:A)(n = x♮)× B(n♮) (Proposition 1.3.12)

≃ ∑(n:♮A)⃝∑ (x:A)B(n♮)× (n = x♮)

≃ ∑(n:♮A)∑(p:A⊗B(n♮))
let x⊗ y = p in (n = x♮) (Proposition 1.3.12)

≃ ∑(n:♮A)∑(p:A⊗B(n♮))
(n = (let x⊗ y = p in x)♮) (Proposition 1.3.6)

≡ ∑(n:♮A)∑(p:A⊗B(n♮))
(n = pr1(p)♮)

Remark 1.3.14. We might hope that ⊗-types are ‘bilinear’, in the sense that

(x ⊗r b y) = (x ⊗r b y) = (x ⊗r b y),

but this does not follow from our rules, even including the hom-type later, as there are models
where it does not hold. Consider some non-trivial model of the ♮ fragment of our theory, and then
interpret⃝∑ as ordinary Σ: ap of first projection on (x⊗ y) = (x⊗ y) would then give x = x for
any term x : A. Typically such a path does not exist. We will later impose an axiom that does imply
the above ‘bilinearity’, see Section 1.5.4.

Remark 1.3.15. The reader may be wondering why we do not instead devise a type theory appro-
priate for working in any category that is both locally cartesian closed and monoidal, and why the
♮ modality needs to be made so tightly connected with ⊗. Unfortunately, a version of this type
theory without the modality is not very expressive.

Suppose we instead have rules along the lines of

Γ ⊢ A type Γ′ ⊢ B type

Γ⊗ Γ′ ⊢ A⊗ B type

Γ ⊢ a : A Γ′ ⊢ b : B

Γ⊗ Γ′ ⊢ a⊗ b : A⊗ B

With these rules, we cannot even posit a monoid object internally. In an ambient context Γ, if we
suppose A type then we can only form A⊗ A type in context Γ⊗ Γ, and so there is no hope for
forming the type of a multiplication operation · : A⊗ A→ A.
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(Of course, in an actual type theory, we would build a substitution for the context Γ⊗ Γ′ into
the conclusion of these rules, but this does not solve the issue.)

The above rules without the modality do allow a different kind of dependency to the one in our
rules: the types A and B can use the variables of Γ and Γ′ in an unrestricted way. But our theory can
simulate this apparently stronger rule. In the above rule, Γ and Γ′ have no dependence between
them and so we can consider the type Γ ⊢ A type as a (closed) map pr1 : ∑(g:G) A(g)→ G, where
G represents the type Γ packed into a single type (which is closed and therefore dull). Similarly
consider B as a closed map pr1 : ∑(g′ :G′) B(g′) → G′. The above version of A⊗ B can be defined
from ours by first using functoriality to form

pr1 ⊗ pr1 :
(

∑(g:G)A(g)
)
⊗

(
∑(g′ :G′)B(g′)

)
→ G⊗ G′

and then calculating the fibres of this map:

fibpr1⊗pr1 : G⊗ G′ → U

1.3.1 Palette Slices

We now introduce the more general notion of split that is actually used in the type theory. The two
sides of a split will be allowed to be more general collections of colours from the palette, rather
than just a single colour. We call these collections slices, and use a judgement Φ ⊢ s slice. A split
will then divide the palette into two slices, as in Φ ⊢ sL ⊠ sR split.

As a piece of raw syntax, a slice is one of the following:

• r, a single colour from Φ;

• t. ≺ c1 ⊗ c2 ⊗ · · · ⊗ cn(⊗1), a fresh colour t followed by a list of labels from Φ optionally
including the special symbol 1;

The periods in the latter option indicate that such a slice binds a fresh colour t.
Slices are typed using the rules in Figure 1.11. We have a ‘preslice’ judgement, representing a

valid list of colours from the palette, a ‘presliceϵ’ judgement that optionally adds −⊗ 1, and finally
an actual ‘slice’ judgement, adding the fresh t. ≺ − label if necessary.

Not all lists of labels form a valid slice: the choices must be compatible with the shape of the
palette. For example, when we reach a comma node we must choose exactly one branch to be
included in the slice. A slice also cannot contain a colour together with any colours in the subpalette
under that colour; choosing a colour already specifies that we are selecting the entire subpalette.

Remark 1.3.16. One way to identify valid preslices is to begin with the entire palette and delete
pieces until we are left with a list of labels tensored together. Consider the palette

t ≺ (a ≺ (p⊗ q, r⊗ s))⊗ b palette

from Section 1.2.2. If we delete the t label, we have (a ≺ (p⊗ q, r⊗ s))⊗ b, giving a⊗ b as a valid
preslice. We could continue by deleting a, q, r and s giving p⊗ b, another valid preslice. But starting
from the same context, deleting everything but p and r leaves them separated by a comma, and so
p⊗ r is not a valid preslice in this palette.
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Φ ⊢ ∅ preslice c ≺ Φ ⊢ c preslice

Φ ⊢ s preslice

c ≺ Φ ⊢ s preslice

Φ1 ⊢ s preslice

Φ1, Φ2 ⊢ s preslice

Φ2 ⊢ s preslice

Φ1, Φ2 ⊢ s preslice

ΦL ⊢ sL preslice ΦR ⊢ sR preslice

ΦL ⊗ΦR ⊢ sL ⊗ sR preslice

Φ ⊢ s preslice

Φ ⊢ s presliceϵ

Φ ⊢ s preslice

Φ ⊢ s⊗ 1 presliceϵ

Φ ⊢ c colour

Φ ⊢ c slice

Φ ⊢ s presliceϵ

Φ ⊢ (t. ≺ s) slice

Figure 1.11: Rules for Slices.

PAL-FILTER
Φ ⊢ s slice

Φs palette
−−−−−− CTX-FILTER

Φ ⊢ s slice Φ | Γ ctx

Φs | Γs ctx
−−−−−−−−−−−−−

Figure 1.12: Admissible Slice Rules.

Definition 1.3.17. For any slice Φ ⊢ s slice, the top colour of s, written ⌜s⌝, is defined by

⌜c⌝ :≡ c

⌜c. ≺ s⌝ :≡ c

In other words, the top colour of a slice s is the fresh label that it binds, unless s is already a
single, in which case the top colour is that single colour.

Definition 1.3.18. For any slice s, the underlying preslice of s, written u(s), is defined by

u(c) :≡ c

u(t. ≺ s) :≡ s

Filtering. The notion of filtering from Section 1.2 needs to be strengthened to work on a general
slice of a palette rather than just a single colour, as shown in Figure 1.12.

If the slice s is a single colour c, then filtering a palette and context works exactly as before.
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For a general slice s ≡ t. ≺ c1⊗ c2⊗ · · · ⊗ cn, filtering to Φs is defined by filtering to each colour
Φci , combining them via ⊗, and finally prepending t as the new top colour. For example,

(t ≺ (a ≺ p⊗ q, r⊗ s)⊗ (b ≺ u⊗ v))t
′.≺p⊗b :≡ t′ ≺ (p⊗ (b ≺ u⊗ v))

(t ≺ (a ≺ p⊗ q, r⊗ s)⊗ (b ≺ u⊗ v))t
′.≺a⊗b :≡ t′ ≺ ((a ≺ p⊗ q, r⊗ s)⊗ (b ≺ u⊗ v))

(t ≺ (a ≺ p⊗ q, r⊗ s)⊗ (b ≺ u⊗ v))t
′.≺q⊗u :≡ t′ ≺ (q⊗ u)

If the slice contains a 1, we add the palette 1 combined with ⊗, even if 1 does not occur in the
original palette:

(t ≺ (a ≺ p⊗ q, r⊗ s)⊗ (b ≺ u⊗ v))t
′.≺p⊗b⊗1 ≡ t′ ≺ ((p⊗ (b ≺ u⊗ v))⊗ 1)

In all cases, the colour ⌜s⌝ becomes the top colour of the palette Φs.

Substitution into a Slice. There is a operation that substitutes one slice for a colour name in
another.

First we define what it means to substitute one preslice into another. Preslices are lists, so we
can simply define:

(s⊗ c⊗ s′)[(t/c)] :≡ s⊗ t⊗ s′

s[(t/c)] :≡ s otherwise

On actual slices, there are two cases depending on whether the target of the substitution binds its
own top colour. If it does, then this top colour is maintained:

c[(t/c)] :≡ t

(s. ≺ s)[(t/c)] :≡ s. ≺ s[(u(t)/c)]

1.3.2 Palette Splits

A split is specified by a judgement Φ ⊢ sL ⊠ sR split where sL and sR are slices of Φ. A split has no
associated term, it is merely a predicate on pairs of slices.

A split corresponds roughly to a morphism Φ → ΦsL ⊗ΦsR , building in all the associativity
and cartesian weakening necessary for this to make sense. We write ⊠ as the separator for the two
sides to distinguish it from the symbol ⊗ that may appear in the slices sL and sR.

We still have the examples we have been using where the slices are two colours that appear at
the top level of the context, but there are new possibilities:

• The rules build in associativity: we will have

t ≺ (p ≺ a⊗ b)⊗ c ⊢ a⊠ (t′. ≺ b⊗ c) split

allowing us to use the resources b⊗ c, even though that combination does not appear verbatim
in the palette.
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• Similarly for unitality: one of the base rules gives

a ⊢ a⊠∅ split

where the preslice ∅ represents the unit.

The formal rules for splits are given in Figure 1.13. Like slices, these are built in two stages.
First a ‘preslice’ Φ ⊢ sL ⊠ sR presplit where sL and sR are preslices. A ‘split’ Φ ⊢ sL ⊠ sR split where
sL and sR are slices, is then a presplit on the underlying preslices of sL and sR

We have compressed the rules for presplits using (−⊗ ϵ) in the first few rules to represent the
possible addition of −⊗ 1 to the preslice, so that (c⊗ ϵ) denotes either (c⊗ 1) or simply c. To be
concrete, expanding all the possibilities gives

∅ ⊢ ∅⊠∅ presplit

c ≺ Φ ⊢ c⊠∅ presplit

c ≺ Φ ⊢ ∅⊠ c presplit

∅ ⊢ 1 ⊠∅ presplit

∅ ⊢ ∅⊠ 1 presplit

∅ ⊢ 1 ⊠ 1 presplit

Φ ⊢ 1 ⊠∅ presplit

Φ ⊢ ∅⊠ 1 presplit

Φ ⊢ 1 ⊠ 1 presplit

c ≺ Φ ⊢ (c⊗ 1)⊠∅ presplit

c ≺ Φ ⊢ c⊠ 1 presplit

c ≺ Φ ⊢ (c⊗ 1)⊠ 1 presplit

c ≺ Φ ⊢ ∅⊠ (c⊗ 1) presplit

c ≺ Φ ⊢ 1 ⊠ c presplit

c ≺ Φ ⊢ 1 ⊠ (c⊗ 1) presplit

The idea is that the presence of a 1 in a split allows arbitrary pieces of the palette to be ignored via
the unique map Φ→ 1. The presence of 1 on both sides of a split is also sound, because 1⊗ 1 ≃ 1
follows from the fact that 1 is both initial and terminal in the category of ‘linear’ objects.

1.3.3 Tensor Type Revisited

Figure 1.14 now builds this more general notion of splits into the rules for ⊗.

• Formation: Unchanged.

• Introduction: If the ambient palette can be split into two slices sL ⊠ sR split, with sL proving
a : At↔⌜sL⌝ and sR proving b : B[a/x]t↔⌜sR⌝, then there is a term a ⊗sL sR

b of type⃝∑ (x:A) B.
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∅ ⊢ (∅⊗ ϵL)⊠ (∅⊗ ϵR) presplit

ϵL ≡ ⊤ or ϵR ≡ ⊤
Φ ⊢ (∅⊗ ϵL)⊠ (∅⊗ ϵR) presplit

c ≺ Φ ⊢ (c⊗ ϵL)⊠ (∅⊗ ϵR) presplit c ≺ Φ ⊢ (∅⊗ ϵL)⊠ (c⊗ ϵR) presplit

Φ ⊢ sL ⊠ sR presplit

c ≺ Φ ⊢ sL ⊠ sR presplit

Φ1 ⊢ s1L ⊠ s1R presplit

Φ1, Φ2 ⊢ s1L ⊠ s1R presplit

Φ2 ⊢ s2L ⊠ s2R presplit

Φ1, Φ2 ⊢ s2L ⊠ s2R presplit

Φ1 ⊢ s1L ⊠ s1R presplit

Φ2 ⊢ s2L ⊠ s2R presplit

Φ1 ⊗Φ2 ⊢ (s1L ⊗ s2L)⊠ (s1R ⊗ s2R) presplit

Φ ⊢ u(sL)⊠ u(sR) presplit

Φ ⊢ sL ⊠ sR split

Figure 1.13: Rules for Splits.
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⊗-FORM
t | Γ ⊢ A type t | Γ, xt : A ⊢ B type

t ≺ Φ | Γ ⊢ ⃝∑ (x:A) B type

⊗-INTRO

t ≺ Φ ⊢ sL ⊠ sR split

ΦsL | ΓsL ⊢ a : A⌜sL⌝↔t ΦsR | ΓsR ⊢ b : B[a/x]⌜sR⌝↔t

t ≺ Φ | Γ ⊢ a ⊗sL sR
b :⃝∑ (x:A) B

⊗-ELIM

t ≺ Φ | Γ, zt :⃝∑ (x:A) B ⊢ C type

t ≺ Φ, l⊗ r | Γ, xl : Al↔t, yr : Br↔t ⊢ c : C[x ⊗l r y/z]
t ≺ Φ | Γ ⊢ s :⃝∑ (x:A) B

t ≺ Φ | Γ ⊢ let x ⊗l r y = s in c : C[s/z]

⊗-BETA

t ≺ Φ | Γ, zt :⃝∑ (x:A) B ⊢ C type

t ≺ Φ, l⊗ r | Γ, xl : Al↔t, yr : Br↔t ⊢ c : C[x ⊗l r y/z]
t ≺ Φ ⊢ sL ⊠ sR split

ΦsL | ΓsL ⊢ a : A⌜sL⌝↔t ΦsR | ΓsR ⊢ b : B[a/x]⌜sR⌝↔t

t ≺ Φ | Γ ⊢ (let x ⊗l r y = a ⊗sL sR
b in c) ≡ c[sL/l⊗ sR/r | a/x, b/y] : C[a⊗ b/z]

SUBST-⊗

t ≺ Φ ⊢ sL ⊠ sR split

ΦsL | ΓsL ⊢ a : A⌜sL⌝↔t ΦsR | ΓsR ⊢ b : B[a/x]⌜sR⌝↔t

t ≺ Φ, l⊗ r | Γ, xl : Al↔t, yr : Br↔t ⊢ J

t ≺ Φ | Γ ⊢ J [sL/l⊗ sR/r | a/x, b/y]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 1.14: Rules for the Tensor Type
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• Elimination: Unchanged.

• Computation: If we perform ⊗-induction on a term that is actually already of the form
a ⊗sL sR

b, then the result is the term c with a and b substituted for x and y, and the slices sL

and sR substituted for the colours l and r, via the admissible SUBST-⊗:

(let x ⊗l r y = a ⊗sL sR
b in c) ≡ c[sL/l⊗ sR/r | a/xl, b/yr] : C[a ⊗sL sR

b/z].

On raw syntax, the operation on is implemented by plugging in sL, sR, a and b for the
appropriate variables in c, just as in ordinary substitution.

For the moment, we make a simplifying assumption about the terms and slices sL, sR, a and b.
We assume that the top colour of the slice sL does not appear in a and the top colour of the
slice sR does not appear in b. This can only happen in a term involving the hom type or a
unitor, neither of which will appear in examples until later. If the top colour does appear then
the substitution operation is very slightly more complicated, but we defer discussion of this
until it can actually affect us, see Remark 1.4.3 and Remark 1.5.8.

Remark 1.3.19. The rules for splits still forbid us from forming a diagonal map A → A⊗ A, as
given an x : A, there is no split sL ⊠ sR split such that x ⊗sL sR

x is well-formed as any split assigns p
to exactly one side.

The exact choice of the rules for splits is a parameter to the type theory: if we allow a split
p ⊠ p split, the above term would be well-formed. It is likely that our theory would then have
semantics in ‘relevance categories’, where all objects have such diagonal morphisms. Unfortunately,
not every property of ⊗ can be controlled this way. To devise a type theory with semantics in
semicartesian monoidal categories (where the monoidal unit is equal to the terminal object), we
would likely need a more permissive variable rule allowing us to use variables of any colour,
something that cannot be controlled via the rules for splits.

Remark 1.3.20. When functoriality is applied directly to a ⊗-pair, the slices are preserved: we can
calculate:

func( f ⊗ g)(x′ ⊗sL sR
y′) ≡ let xr ⊗ yb = x′ ⊗sL sR

y′ in f (x) ⊗r b g(y)

≡ f (x) ⊗r b g(y)[sL/r, sR/b | x′/x, y′/y]

≡ f (x′) ⊗sL sR
g(y′)

We can now use the interaction between ⊗-INTRO and marking to show that ♮ is monoidal:

Proposition 1.3.21 (♮ is monoidal). The canonical map

mon : ♮(A⊗ B)→ ♮A× ♮B

is an equivalence, and more dependently, the canonical map

mon : ♮⃝∑ (x:A)B(x)→ ∑(u:♮A)♮B(u♮)

is an equivalence.

47



Proof. The canonical map mon was defined in Definition 1.3.11. To define an inverse, from z :
∑(x:♮A) ♮B(x♮) we get (pr1z)♮ : A and (pr2z)♮ : B(pr1(z)♮). These terms are both marked, so we can
use the split 1 ⊠ 1 to form the ⊗-pair

((pr1z)♮ ⊗1 1 (pr2z)♮)♮ : ♮⃝∑ (x:A)B(x)

We now check that the round trips are the identity. Starting with z : ∑(x:♮A) ♮B(x♮):

((pr1((pr1z)♮ ⊗1 1 (pr2z)♮)♮♮)♮, (pr2((pr1z)♮ ⊗1 1 (pr2z)♮)♮♮)♮)

≡ ((pr1((pr1z)♮ ⊗1 1 (pr2z)♮)♮, (pr2((pr1z)♮ ⊗1 1 (pr2z)♮)♮)

≡ ((pr1z)♮♮, (pr2z)♮♮)

≡ (pr1z, pr2z)

≡ z

≡ z

For the other direction, the composite is:

((pr1((pr1w♮)
♮, (pr2w♮)

♮))♮ ⊗1 1 (pr2((pr1w♮)
♮, (pr2w♮)

♮))♮)
♮

≡ ((pr1w♮)
♮
♮ ⊗1 1 (pr2w♮)

♮
♮)

♮

≡ (pr1w♮ ⊗1 1 pr2w♮)
♮

By ⊗-induction we may assume w♮ ≡ x⊗ y, and then

(pr1(x⊗ y) ⊗1 1 pr2(x⊗ y))♮ ≡ (x ⊗1 1 y)♮ ≡ x⊗ y♮ ≡ w♮
♮ ≡ w

There is a subtle point that we have managed to avoid so far. Consider the context

p ≺ r⊗ b | xr : A, xb : B.

The term x⊗ y with the slices suppressed is ambiguous: it could mean either of

x ⊗r′. b′. y or x ⊗r b y

and these are not definitionally equal.
This issue appears when we try to show that ♮(A⊗ B) ≃ ♮A⊗ ♮B. There are obvious maps in

both directions, using ⊗-induction:

(x ⊗1 1 y)♮ 7→ x♮ ⊗1 1 y♮

x♮ ⊗1 1 y♮ 7→ (x ⊗1 1 y)♮

The round-trip on ♮(A⊗ B) is the identity, because any space is definitionally marked. But the
round-trip the other way yields x ⊗1 1 y : ♮A⊗ ♮B, and we need this to equal x ⊗r b y. The equality
follows from the apparently simpler equivalence 1⊗ 1 ≃ 1:
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Proposition 1.3.22. The canonical map ♮(A⊗ B)→ ♮A⊗ ♮B is an equivalence for every A and B if and
only if 1⊗ 1 ≃ 1.

Proof. The former clearly implies the latter, taking A ≡ B ≡ 1: we see

(1⊗ 1) ≃ (♮1⊗ ♮1) ≃ ♮(1⊗ 1) ≃ (♮1× ♮1) ≃ (1× 1) ≃ 1.

In the other direction,

♮A⊗ ♮B ≃ (♮A× 1)⊗ (♮B× 1)

≃ ♮A× ♮B× (1⊗ 1) (Proposition 1.3.12)

≃ ♮A× ♮B

≃ ♮(A⊗ B) (Proposition 1.3.21)

To show that 1 ⊗ 1 ≃ 1, we need to use the monoidal unit. We discuss the monoidal in
Section 1.4, but all we need now is that there is a pointed type S and an equivalence 1⊗ S ≃ 1.

Proposition 1.3.23. 1⊗ 1 ≃ 1

Proof. Functoriality of 1⊗− on the composite

1 S 1

id

gives

1⊗ 1 1⊗ S 1⊗ 1

id

with the middle object equivalent to 1. The composite the other way is also the identity, as all maps
(1⊗ S)→ (1⊗ S) are equal to the identity.

As a consequence, we have the following meta-principle:

Meta-Lemma 1.3.24. For dull x : A and y : B and splits sL ⊠ sR split and tL ⊠ tR split, there is an equality

x ⊗sL sR
y = x ⊗tL tR

y

This is only a meta-principle, because we cannot quantify over slices or splits internally.

Proof. Follows because x♮ ⊗sL sR
y♮ and x♮ ⊗tL tR

y♮ have the same image under the equivalence
♮A⊗ ♮B→ ♮(A⊗ B), and so there is a path

x♮ ⊗sL sR
y♮ = x♮ ⊗tL tR

y♮.

By functoriality we can apply ♮-ELIM to each factor to get the desired path, as functoriality on a
tensor-pair preserves the slices that are used (Remark 1.3.20).
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This trick only applies to dull terms, because we have to pass through the ♮-types.

Remark 1.3.25. A possible improvement to our type theory would be to make the splits proof-
irrelevant, so that two terms that differ only in the choice of splits are definitionally equal. This
would be convenient, but would make the metatheory more complicated: all constructions would
need to be invariant under the choice of split.

We have seen that in some cases there is a path between terms that only differ in the choice of
split. There is then a concern that declaring the two endpoints definitionally equal might not make
that path equal to refl, investigating whether this can ever happen is left to future work.

1.3.4 Stronger Induction Principles

Unfortunately, we have more-or-less exhausted the facts about ⊗-types that are provable directly
from the binary eliminator given above. The issue is that, with the rules we have so far, we can
only apply the induction principle to terms of the top colour. We run into this limitation quickly
when dealing with nested tensors. Suppose we are trying to define an associativity map, and we
have a term p : A⊗ (B⊗ C). Using ⊗-induction on p gives xr : A and yb : B⊗ C, but now we are
stuck! We would like to apply ⊗-induction again to y, but we cannot. The term y on its own is not
well-formed in the body of this induction on p: it is not of colour p.

Later we will introduce hom types, the right adjoint to tensor types. It should not surprise
us that, in the presence of these hom types, more general induction principles are derivable. For
associativity, we need the ‘ternary’ eliminators given in Figure 1.15, and we will show later in
Section 1.6 that these eliminators are indeed derivable using the hom type.

Unfortunately, the presence of this hom type is still not sufficient to derive all the induction
principles that we would expect. The issue is the following: in the typical arguments for deriving
these induction principles, the right adjoint types (here Π- and ⊸-types) are used to move the
variables to the right of the target ‘out of the way’, by placing them into the motive of the induction.
With a bunched structure however, this cannot always be done. To try and derive an induction
principle for A⊗ (B× (C⊗ D)), say, we cannot move D into the motive on its own, as −⊗ (−×
(−⊗ D) does not have a right adjoint.3

Rather than define a custom eliminator for every new situation we encounter, in Section 1.6
we will describe an inductive collection of ‘patterns’, and give a general rule for matching against
arbitrary pattern. We will wait until then to properly define patterns—several new judgement
forms are needed.

Remark 1.3.26. A similar issue is encountered in Spatial Type Theory [Shu18, §5], where ♭-induction
can only be applied when the target is an ordinary variable, not when the target is a ‘crisp’ variable.
A ‘crisp’ ♭-induction principle is derivable, using the fact that ♭ has a right adjoint. This trick works
very generally: such ‘crisp’ induction principles are derivable in Multimodal Type Theory [GKNB20,
§6.2] for any modality with a right adjoint.

We can now clear up associativity. As promised earlier, we will begin to leave the splits off the
syntax of ⊗-INTRO when the split used is unambiguous.

3In this particular case we can use a hom type to move A into the motive, but this forces the ambient context to be
only used marked, and so is not fully general.
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⊗-ELIM-TRIPLE-LEFT

t | Γ, wt :⃝∑ (p:⃝∑ (x:A) B)(let x⊗ y = p inC) ⊢ D type

t ≺ (l ≺ l′ ⊗ r′)⊗ r | Γ, xl′ : A, yr
′

: B, zr : C ⊢ d : D[(x ⊗l′ r′ y) ⊗l r z/w]

t ≺ Φ | Γ ⊢ s :⃝∑ (p:⃝∑ (x:A) B)(let x⊗ y = p inC)

t ≺ Φ | Γ ⊢ let (x ⊗l′ r′ y) ⊗l r z = s in d : D[s/w]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(let (x ⊗l′ r′ y) ⊗l r z = (a ⊗sLL sLR
b) ⊗sL sR

c in d)

≡ d[(sL/l ≺ sLL/l′ ⊗ sLR/r′)⊗ sR/r | a/xl′ , b/yr
′
, c/zr]

⊗-ELIM-TRIPLE-RIGHT

t | Γ, wt :⃝∑ (x:A)⃝∑ (y:B)C ⊢ D type

t ≺ l⊗ (r ≺ l′ ⊗ r′) | Γ, xl : A, yl
′

: B, zr
′

: C ⊢ d : D[x ⊗l r (y ⊗l′ r′ z)/w]

t ≺ Φ | Γ ⊢ s :⃝∑ (x:A)⃝∑ (y:B)C

t ≺ Φ | Γ ⊢ let x ⊗l r (y ⊗l′ r′ z) = s in d : D[s/w]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(let x ⊗l r (y ⊗l′ r′ z) = a ⊗sL sR
(b ⊗sRL sRR

c) in d)

≡ d[sL/l⊗ (sR/r ≺ sRL/l′ ⊗ sRR/r′) | a/xr, b/yl
′
, c/zr

′
]

⊗-Id-ELIM

t | Γ, wt :
(

∑(x:A)∑(x′ :A)x = x′
)
⊗

(
∑(y:B)∑(y′ :B)y = y′

)
⊢ D type

t ≺ (l⊗ r) | Γ, xl : A, yr : B ⊢ d : D[(x, x, reflx) ⊗l r (y, y, refly)/w]

t ≺ Φ | Γ ⊢ s :
(

∑(x:A)∑(x′ :A)x = x′
)
⊗

(
∑(y:B)∑(y′ :B)y = y′

)
t ≺ Φ | Γ ⊢ let (x, x, reflx) ⊗l r (y, y, refly) = s in d : D[s/w]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(let (x, x, reflx) ⊗l r (y, y, refly) = (a, a, refla) ⊗sL sR
(b, b, reflb) in d)

≡ d[sL/l⊗ sR/r | a/x, b/y]

Figure 1.15: Derivable Eliminators
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Proposition 1.3.27 (Associativity of ⊗). For dull types A, B and C,

A⊗ (B⊗ C) ≃ (A⊗ B)⊗ C.

More generally, if A : U , B : A→ U and C : ∏(x:A) B(x)→ U ,

⃝∑ (x:A)⃝∑ (y:B(x))C(x)(y) ≃ ⃝∑ (v:⃝∑ (x:A) B(x))let x⊗ y = v inC(x)(y).

Proof. We prove the simple version, the maps for the dependent version are defined the same way.
Suppose the total colour is brown, which comprises red, blue and yellow.

The maps are defined in the expected way using the eliminators of Figure 1.15.

assocA,B,C(x⊗ (y⊗ z)) :≡ (x⊗ y)⊗ z

associnvA,B,C((x⊗ y)⊗ z) :≡ x⊗ (y⊗ z)

The proof that they are inverses uses the same eliminators. By function extensionality we have to
give a function

∏(t:A⊗(B⊗C))associnvA,B,C(assocA,B,C(t)) = t

If we apply the triple-induction on t as x⊗ (y⊗ z), then we can calculate

associnvA,B,C(assocA,B,C(x⊗ (y⊗ z))) ≡ associnvA,B,C((x⊗ y)⊗ z) ≡ x⊗ (y⊗ z)

so we can take reflx⊗(y⊗z) as our proof term:

(λ.(x⊗ (y⊗ z)).reflx⊗(y⊗z)) : ∏(t:A⊗(B⊗C))associnvA,B,C(assocA,B,C(t)) = t

The other composite is similar, instead using the eliminator for (x⊗ y)⊗ z.

Paths in Σ types are characterised by a pair of paths in the two components, but the same is
not true for paths in ⊗-types, the type of such paths is not equal to the ‘tensor of paths in the two
components’: there is no way to make sense of that statement in a way that satisfies the linearity
restrictions. Given two points p, p′ : A⊗ B, performing ⊗-induction on p gives fresh colours and
variables r⊗ b | xr : A, yb : B. Performing a second ⊗-induction on p′ gives fresh colours and
variables r′ ⊗ b′ | x′r

′
: A, y′b

′
: B. But now we can’t form the type x = x′, because the colours of

the two terms do not match. There is therefore no hope of a characterisation of the type p = p′ for
generic p, p′ : A⊗ B.

We can however show that, like everything else in type theory, ⊗-INTRO respects equality.
This will require another specialised induction principle, also displayed in Figure 1.15, because
path-induction may only be applied to a term of the top colour. We discuss this restriction further
in Remark 1.6.10.

Proposition 1.3.28 (⊗ respects equality). Suppose a, a′ : A with p : a = a′, and b, b′ : B with q : b = b′.
Then there is a path (a⊗ b) = (a′ ⊗ b′).
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In syntax, we are inhabiting the type

∏(w:T)let (a, a′, p)⊗ (b, b′, q) = w in (a⊗ b) = (a′ ⊗ b′)

where T is the type

T :≡
(

∑(a:A)∑(a′ :A)a = a′
)
⊗

(
∑(b:B)∑(b′ :B)b = b′

)
.

Proof. Follows by applying the above eliminator, which reduces the goal type to (a⊗ b) = (a⊗ b).

f ((a, a, refla)⊗ (b, b, reflb)) :≡ refla⊗b

Proposition 1.3.29. If f : A→ A′ and g : B→ B′ are equivalences, then f ⊗ g : A⊗ B→ A′ ⊗ B′ is an
equivalence.

Proof. Suppose we have left inverses i : A′ → A and j : B′ → B, so that there are homotopies
p : i ◦ f ∼ idA and q : j ◦ g ∼ idB. Then also p : i ◦ f ∼ idA and q : j ◦ g ∼ idB, so i and j are also left
inverses to f and g.

Given a p : A⊗ B our goal is to prove (i⊗ j) ◦ ( f ⊗ g)(p) = p. By ⊗-induction, it is enough to
prove (i⊗ j) ◦ ( f ⊗ g)(x⊗ y) = x⊗ y, and by functoriality this type is i( f (x))⊗ j(g(y)) = x⊗ y. We
have such a path by the previous Proposition applied to the paths i( f (x)) = x and j(g(y)) = y.

1.4 Unit

The monoidal unit type S is, roughly, a nullary version of the ⊗-type. We already have a palette
constructor for a nullary monoidal product, ∅ palette, but this is not yet reified as a type.

We can in fact already use the unitors in one direction via the split judgement: if the palette is p,
then we can form a term a ⊗p t.≺∅ b, where b is a term in palette t ≺ ∅.

The natural thing to try here is a simple ‘nullary’ split as we did at the beginning of Section 1.3
for binary splits:

t ≺ Φ,∅, Φ′ ⊢ unit
S-INTRO?

t ≺ Φ ⊢ unit

t ≺ Φ | Γ ⊢ ◊ : S

Unfortunately this is not enough, because of the following issue. In the presence of a cartesian
weakening rule, the term

PAL-WK

S-INTRO?
t ≺ ∅ ⊢ unit

t ≺ ∅ ⊢ ◊ : S

t ≺ ∅,∅ ⊢ ◊ : S

yields a term that is ambiguous in a material way: there should be two non-equal projections
S× S→ S.
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PAL-SPHERE-NAMED
∅i palette

Φ ⊢ (t. ≺ ∅i.) slice

Φt.≺∅i. :≡ t ≺ ∅i

u(t. ≺ ∅i.) :≡ ∅

(t. ≺ ∅i.)[(s/c)] :≡ t. ≺ ∅i.

UNIT-ZERO
Φ ⊢ 0 unit

UNIT-HERE
∅i ⊢ i unit

UNIT-SUB
Φ ⊢ i unit

(c ≺ Φ) ⊢ i unit

UNIT-LEFT
Φ1 ⊢ i unit

Φ1, Φ2 ⊢ i unit
UNIT-RIGHT

Φ2 ⊢ i unit

Φ1, Φ2 ⊢ i unit

Figure 1.16: Rules for Palette Units

Remark 1.4.1. The αλ-calculus [Pym02, §2.3] uses a rule of this kind, and so suffers from this issue.
This contradicts soundness for the αλ-calculus in ‘cartesian doubly-closed categories’ [Pym02,
Proposition 3.8]. Often ⊗ is assumed to be affine when working in the αλ-calculus [OHe03, §3.3],
meaning S ≡ 1, and then there is no issue: S is then also the unit of the context comma and all maps
into S are equal.

We therefore need some way to refer to different instances of the monoidal unit that are
combined with a ×. We introduce a second, labelled version of the unit palette constructor
∅i palette, where i is a ‘unit label’.

1.4.1 Palette Units

The new rules are show in Figure 1.16, also introducing a new judgement Φ ⊢ i unit that picks out
a unit label or the special label 0. The latter case corresponds to the morphism 1→ S picking out
the basepoint: such a map into the sphere is always available regardless of the state of the palette.

We add a new kind of palette slice that creates this labelled unit palette. We already had a
slice Φ ⊢ t. ≺ ∅ slice for any palette Φ, so we add the option to name this new judgemental unit:
Φ ⊢ t. ≺ ∅i. slice. The various operations that use slices have to be extended to include this new
case, as shown in the figure. Substitution into the slice t. ≺ ∅i. has no effect, because both t and i
are freshly bound names.

We do not allow an instance of Φ ⊢ i unit to combine multiple ∅i together, and we do not allow
the chosen unit to appear below an instance of the ⊗ palette former; it must appear at the top level.

1.4.2 Type Former

The rules for the monoidal unit S, shown in Figure 1.17, now internalise the judgemental unit ∅i.

• Formation: There is a type S, well-formed in any context.
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S-FORM
t ≺ Φ | Γ ⊢ S type

S-INTRO
t ≺ Φ ⊢ i unit

t ≺ Φ | Γ ⊢ ◊i : S
S-ELIM

t ≺ Φ | Γ, zt : S ⊢ C type

t ≺ Φ,∅i | Γ ⊢ c : C[◊i/z]
t ≺ Φ | Γ ⊢ s : S

Φ | Γ ⊢ let ◊i = s in c : C[s/z]

S-BETA

t ≺ Φ | Γ, zt : S ⊢ C type

t ≺ Φ,∅i | Γ ⊢ c : C[◊i/z]
t ≺ Φ ⊢ j unit

Φ | Γ ⊢ (let ◊i = ◊j in c) ≡ c[i/j] : C[◊j/z]

Figure 1.17: Rules for the Monoidal Unit Type

• Introduction: For any judgemental unit i, there is a term ◊i. If i ≡ 0 then we write ◊, to align
with the syntax for marked variables.

• Elimination: Whenever we have a term s : S, we may assume it is of the form ◊i for a fresh
judgemental unit label ∅i in the palette. We call this S-induction. Syntactically, if a target type
C depends on a variable zt : S, and c : C[◊i/z] is a term that uses a unit label i, then there is
an induced term

let ◊i = s in c : C[s/z]

• Computation: If we perform S-induction on a term that is of the form Sj, then the result is c
with j substituted in accordingly:

(let ◊i = ◊j in c) ≡ c[j/i] : C[◊j/z]

This c[j/i] operation is yet another form of substitution, that simply replaces the label j for i
everywhere that it appears.

To define maps into A⊗ S, we can use the new labelled unit palette slice. If the top colour is p,
then we have the split p⊠ y. ≺ ∅i. We call such splits unitor splits.

Definition 1.4.2. For any dull type A, define unitlinvA : A→ S⊗ A and unitrinvA : A→ A⊗ S by

unitlinvA(a) :≡ ◊i ⊗y.≺∅i. p a

unitrinvA(a) :≡ a ⊗p y.≺∅i.
◊i

On the left side (right side resp.) of ⊗-INTRO, we immediately apply S-INTRO, but as usual, we
have the option of putting any term in palette y ≺ ∅i there.
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Remark 1.4.3. A use of a unitor split is the second way that the name of the top colour, in this case
p, can appear in a term. If we have to substitute the above term a ⊗p y.≺∅i.

◊y into a marked variable
where the top colour is g, say, the result would be a ⊗g y.≺∅i.

◊i: the top colour p has been replaced
with g.

As with normal splits, when working informally we will omit the colour labels from a unitor
split if they are not used in the term, writing simply unitlinvA(a) :≡ ◊i ⊗∅i

a, for example.

1.4.3 Unitors

Similarly to the situation for the ⊗-type, the S-ELIM rule is not strong enough to derive all the
induction principles for S that we might like. In particular, we are not aware of any way to derive
the unitors unitlA : S⊗ A → A and unitrA : A⊗ S → A from what we have outlined above. We
add these missing induction principles to our pattern matching construct Section 1.6, and preview
them in Figure 1.18.

Proposition 1.4.4. ♮S ≃ 1

Proof. We choose ◊♮ : ♮S as the centre of contraction. We define a null-homotopy ∏(x:♮S) x = ◊♮ by
performing induction on x as ◊♮, and then supplying refl◊♮ .

This clears up the missing piece in Proposition 1.3.23.
The induction principle for the left unitor says that any term p : S⊗ A may be assumed to be of

the form p ≡ ◊i ⊗y.≺∅i. p a, where a : A. This new a : A is a variable of the same colour as p, and so
is immediately available to be used. Doing induction of this kind does not bind a new unit label i:
this unit label only ‘exists’ on the left side of that ⊗.

Definition 1.4.5. For any dull type A, we can define unitlA : S⊗ A → A and unitrA : A⊗ S→ A
by:

unitlA(p) :≡ let ◊i ⊗y.≺∅i. p x = p in x

unitrA(p) :≡ let x ⊗p y.≺∅i.
◊i = p in x

Using an almost identical proof to Proposition 1.3.6, we find

Proposition 1.4.6 (Uniqueness principle for the unitor). Suppose A is a dull type and C : S⊗ A→ U
is a type family and f : ∏(p:S⊗A) C(p). For any p : S⊗ A we have

(let ◊i ⊗y.≺∅i. p x = p in f (◊i ⊗y.≺∅i. p x)) = f (p)

Combining this with Proposition 1.3.6, we immediately have

Corollary 1.4.7. Any use of ⊗-induction on S⊗ A may be replaced with a use of unitor induction:

(let s⊗ y = p in f (s⊗ y)) =
(
let ◊i ⊗y.≺∅i. p x = p in f (◊i ⊗y.≺∅i. p x)

)
Lemma 1.4.8. unitlA : S⊗ A→ A defined above is an equivalence.
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S-BASE-ELIM

t ≺ Φ | Γ, zt : ♮S ⊢ C type

t ≺ Φ | Γ ⊢ c : C[◊♮/z]
t ≺ Φ | Γ ⊢ s : ♮S

t ≺ Φ | Γ ⊢ let ◊♮ = s in c : C[s/z]

S-BASE-BETA

t ≺ Φ | Γ, yt : B ⊢ c : C[◊i ⊗u.≺∅i t y/z]
t ≺ Φ | Γ ⊢ b : B

t ≺ Φ | Γ ⊢ (let ◊i ⊗u.≺∅i t y = ◊j ⊗v.≺∅j t b in c) ≡ c[b/y] : C[◊j ⊗v.≺∅j t b/z]

S-UNITOR-LEFT-ELIM

t | Γ, x : S ⊢ B type

t ≺ Φ | Γ, zt :⃝∑ (x:S)B ⊢ C type

t ≺ Φ | Γ, yt : B ⊢ c : C[◊i ⊗u.≺∅i t y/z]
t ≺ Φ | Γ ⊢ s :⃝∑ (x:S)B

t ≺ Φ | Γ ⊢ let ◊i ⊗u.≺∅i t y = s in c : C[s/z]

S-UNITOR-LEFT-BETA

t | Γ, x : S ⊢ B type

t ≺ Φ | Γ, zt :⃝∑ (x:S)B ⊢ C type

t ≺ Φ | Γ, yt : B ⊢ c : C[◊i ⊗u.≺∅i t y/z]
t ≺ Φ | Γ ⊢ b : B

t ≺ Φ | Γ ⊢ (let ◊i ⊗u.≺∅i t y = ◊j ⊗v.≺∅j t b in c) ≡ c[b/y] : C[◊j ⊗v.≺∅j t b/z]

S-UNITOR-RIGHT-ELIM

t | Γ ⊢ A type

t ≺ Φ | Γ, zt : A⊗ S ⊢ C type

t ≺ Φ | Γ, xt : A ⊢ c : C[x ⊗t u.≺∅i
◊i/z]

t ≺ Φ | Γ ⊢ s : A⊗ S

t ≺ Φ | Γ ⊢ let x ⊗t u.≺∅i
◊i = s in c : C[s/z]

S-UNITOR-RIGHT-BETA

t | Γ ⊢ A type

t ≺ Φ | Γ, zt : A⊗ S ⊢ C type

t ≺ Φ | Γ, xt : A ⊢ c : C[x ⊗t u.≺∅i
◊i/z]

t ≺ Φ | Γ ⊢ a : A

t ≺ Φ | Γ ⊢ (let x ⊗t u.≺∅i
◊i = a ⊗t v.≺∅j

◊j in c) ≡ c[a/x] : C[a ⊗t v.≺∅j
◊j/z]

Figure 1.18: Induction Principles for the Monoidal Unit
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Proof. The composite unitlA ◦ unitlinvA is definitionally the identity by the computation rule for
unitor induction.

unitlA(unitlinvA(a)) ≡ let ◊i ⊗∅i p a = unitlinvA(a) in a

≡ let ◊i ⊗∅i p x = ◊i ⊗∅i p a in x

≡ x[a/x] ≡ a

For the other direction, we are looking for a term of

∏(p:S⊗A)unitlinvA(unitlA(p)) = p

So perform induction on p as ◊i′ ⊗∅i′ p x, again using unitor induction. We can now compute

unitlinvA(unitlA(◊i′ ⊗∅i′ p x)) ≡ unitrinvA(x) ≡ ◊i ⊗∅i p x

This is judgementally equal (up to α-equivalence of the colour label) with ◊i′ ⊗∅i′ p x, so we can take
refl◊i′ ⊗∅i′ px as our path.

1.5 Hom

The ⊗-type has a right adjoint: a restricted, ‘linear’ version of the ordinary function type. We call
these hom types and write the non-dependent instances using the ⊸ symbol. Written in our palette
notation, we wish for this type former to be part of a bijection of judgement states

p ≺ r⊗ b | xr : A, yb : B ⊢ (. . .) : C

r | xr : A ⊢ (. . .) : B ⊸ C
=============================

Before showing the formal rules, let us demonstrate how a currying map is defined.

Proposition 1.5.1 (Currying for ⊸). There is a map ((A⊗ B) ⊸ C)→ (A ⊸ (B ⊸ C)).

Proof. Let us write the top colour as yellow y. The arrow in the centre of the currying map is an
ordinary cartesian arrow, so suppose we have hy : (A⊗ B) ⊸ C.

To form a term of type A ⊸ (B ⊸ C), we use ∂-abstraction. A first use adds an assumption
xr : A, where r is a fresh colour tensored with y. It would be reasonable to call this combination
‘orange’ o, and the state of the palette is now o ≺ y⊗ r. A second use of ∂-abstraction gives an
assumption yb : B, where b is similarly a fresh colour tensored with o. We choose to call this colour
combination w, so the state of the palette is

w ≺ (o ≺ y⊗ r)⊗ b

We now have to use h, x and y to form a term of C. To apply a hom to an argument, we must
split our resources in the same sense that we do for ⊗-INTRO, using one side to produce the hom
and the other side to produce the argument. We choose the split y on the left and p. ≺ r⊗ b on the
right. For the hom, we use the variable h, and for the argument we use x ⊗r b y, forming the ‘linear
application’ hy⟨x ⊗r b y⟩p.≺r⊗b.

As a term, we have formed

λh.∂oxr.∂wyb.hy⟨x ⊗r b y⟩p.≺r⊗b : ((A⊗ B) ⊸ C)→ (A ⊸ (B ⊸ C))
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⊸-FORM

r | Γ ⊢ A type

p ≺ (t ≺ Φ)⊗ r | Γ, xr : A ⊢ B type

t ≺ Φ | Γ ⊢ ⃝∏ (xr :A)
pB type

⊸-INTRO
p ≺ (t ≺ Φ)⊗ r | Γ, xr : A ⊢ b : B

t ≺ Φ | Γ ⊢ ∂pxr.b :⃝∏ (xr :A)
pB

⊸-ELIM

t ≺ Φ ⊢ sL ⊠ sR split r :≡ ⌜sR⌝
(t ≺ Φ)sL | ΓsL ⊢ f :⃝∏ (xr :A)

pB (t ≺ Φ)sR | ΓsR ⊢ a : A

t ≺ Φ | Γ ⊢ f sL⟨a⟩sR : B[a/x][(t ≺ sL ⊠ sR/p)]

⊸-BETA

t ≺ Φ ⊢ sL ⊠ sR split r :≡ ⌜sR⌝
p ≺ (ΦsL ⊗ r) | ΓsL , xr : A ⊢ b : B ΦsR | ΓsR ⊢ a : A

t ≺ Φ | Γ ⊢ (∂pxr.b)sL⟨a⟩sR ≡ b[a/x][(t ≺ sL ⊠ sR/p)] : B[a/x][(t ≺ sL ⊠ sR/p)]

⊸-ETA
t ≺ Φ | Γ ⊢ f :⃝∏ (xr :A)

pB

t ≺ Φ | Γ ⊢ f ≡ (∂pxr. f t⟨x⟩r) :⃝∏ (xr :A)
pB

MERGE

t ≺ Φ ⊢ sL ⊠ sR split

t′ ≺ ΦsL ⊗ΦsR | ΓΦsL⊗ΦsR ⊢ J

t ≺ Φ | Γ ⊢ J [(t ≺ sL ⊠ sR/t′)]
−−−−−−−−−−−−−−−−

Figure 1.19: Rules for the Hom Type

1.5.1 Type Former

As with the ⊗-type, we will allow a dependent version of ⊸ which we call⃝∏ . The dependencies
we allow in the inputs of the hom type are exactly the dependencies implicit in the premise
‘p ≺ r⊗ b | xr : A, yb : B ⊢ (. . .) : C’: the domain B is required to be dull (because there are no other
b variables), but the codomain C can be any type in context p ≺ r⊗ b | xr : A, yb : B. Our actual
formation rule relaxes xr : A to an arbitrary context.

The rules for the ⊸-type are given in Figure 1.19.

• Formation: For any dull type A, and any type B using a new assumption xr : A as a disjoint
resource, there is a type⃝∏ (xr :A)

pB.

The linearity constraint means that r is a fresh colour, and this colour is linearly combined
with the top colour t of the ambient palette. In B, we need a new label to name this tensor
combination of t and r, which is the second colour p that is bound in B. In particular, this
means that the top colour changes when going under a hom binder, and so we (temporarily)
lose access to all the variables labelled the previous top colour. Access can be regained by
using one of the splitting rules, either ⊗-INTRO or ⊸-ELIM.
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If B does not depend on A and the labels r and p do not appear in B, then we write A ⊸ B.

Chained hom types associate to the right, like ordinary function types: A ⊸ B ⊸ C is read
as A ⊸ (B ⊸ C). The same is true when mixing Π- and ⊸-types: we read A→ B ⊸ C as
A→ (B ⊸ C).

• Introduction: If b : B is a term using xr : A as a disjoint resource from the ambient context,
then we have the ∂-abstraction ∂pxr.b :⃝∏ (xr :A)

pB.

• Elimination: If we can split the ambient palette into two slices sL and sR, and use sL to
produce a hom f : ⃝∏ (xr :A)

pB and sR to produce a : A, then we can apply f to a to form
f sL⟨a⟩sR : B[a/x][(t ≺ sL ⊠ sR/p)]. The split of the palette is specified using the same Φ ⊢
sL ⊠ sR split judgement as used in ⊗-INTRO.

We might hope for the type to be B[a/x] exactly, but unfortunately the palette does not line up:
the result of the substitution is in palette p ≺ ΦsL ⊗ΦsR rather than Φ, and must be weakened
‘by hand’ using an admissible J [(t ≺ sL ⊠ sR/p)] operation which we discuss below.

As in ⊗-INTRO, it is typically obvious which split of the palettes has been used, just by
inspecting how the variables appear on both sides. We will elide the slices, unless there is
some ambiguity in which split has been used.

• Computation: Whenever a ∂-abstraction is applied directly to an argument, we can compute
the result:

(∂pxr.b)⟨a⟩ ≡ b[a/x][(t ≺ sL ⊠ sR/p)].

As with ordinary functions, this is done by substituting the argument for the variable in
the body of the function. Again we apply a ‘merge’ to the result, the same operation that is
performed on the type in the elimination rule.

• Uniqueness: Any hom h :⃝∏ (xr :A)
pB is definitionally equal to ‘the hom that applies f to its

argument’:
h ≡ ∂pxr.h⟨x⟩.

• Merging: Merging moves a judgement in palette ΦsL⊗sR into palette Φ, whenever Φ ⊢
sL ⊠ sR split

Splits correspond roughly to morphisms Φ → ΦsL ⊗ ΦsR , and merging corresponds to
precomposition with this morphism. The original palette Φ may contain more colours than
those that appear in sL and sR, and so this is another form of weakening.

On syntax, there is only one modification that needs to be made: the judgement J may refer
to fresh top colours bound by the slices sL and sR, and these do not exist in the palette Φ. The
fix is to replace the first mention of these colours with the entire corresponding slice.

Only first occurrence of each colour as a slice is replaced, and the operation does not recur
deeper into the term. We want any further mentions of that colour to refer to binding site that
the substitution has just created, rather a fresh colour with the same name.

The definition of this merging operation is simplified by instead defining an operation that
substitutes an individual slice in this way. The merging operation is then defined by doing
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two single-slice substitutions followed by a t↔ t recolouring. The result of doing just one
slice substitution is not well-formed, only the combination of all three operations.

To demonstrate slice substitution, fix a split

t ≺ a⊗ b⊗ c⊗ d ⊢ (l. ≺ a⊗ b)⊠ (r. ≺ c⊗ d) split

Some single slice substitutions on terms are then

(m ⊗l r (n ⊗c d o))[(r. ≺ c⊗ d/r)] :≡ (m ⊗l r.≺c⊗d (n ⊗c d o))

(m ⊗a s.≺b⊗r (n ⊗b r o))[(r. ≺ c⊗ d/r)] :≡ (m ⊗a s.≺b⊗c⊗d (n ⊗b r.≺c⊗d o))

(m ⊗l r (n ⊗r s.≺∅i.
o))[(r. ≺ c⊗ d/r)] :≡ (m ⊗l r.≺c⊗d (n ⊗r s.≺∅i.

o))

In the second example, the slice substitution into the split on the left has not bound the colour
r, and so it bound in the nested split on the right. In the third example, the r does get bound in
the left slice, and so the right slice refers to that r rather than binding a new one.

Then, merging on the same terms is given by

(m ⊗l r (n ⊗c d o))[(t ≺ (l. ≺ a⊗ b)⊠ (r. ≺ c⊗ d)/t′)] :≡ (m ⊗l.≺a⊗b r.≺c⊗d (n ⊗c d o))

(m ⊗a s.≺b⊗r (n ⊗b r o))[(t ≺ (l. ≺ a⊗ b)⊠ (r. ≺ c⊗ d)/t′)] :≡ (m ⊗a s.≺b⊗c⊗d (n ⊗b r.≺c⊗d o))

(m ⊗l r (n ⊗r s.≺∅i.
o))[(t ≺ (l. ≺ a⊗ b)⊠ (r. ≺ c⊗ d)/t′)] :≡ (m ⊗l r.≺c⊗d (n ⊗r s.≺∅i.

o))

Only the slice annotations in a term are changed by this operation: the shape of the term
remains the same.

Remark 1.5.2. The splits used in the currying example are completely determined by the way the
variables are used, and the extra colours bound by the ∂-abstractions are not used at all. Leaving
them off yields

λh.∂x.∂y.h⟨x⊗ y⟩ : ((A⊗ B) ⊸ C)→ (A ⊸ (B ⊸ C))

which is significantly more readable. Going forwards we allow ourselves to work more informally,
not mentioning splits if they are determined by the terms and not keeping explicit track of the
shape of the palette.

Remark 1.5.3. We can again describe the type former as a function into the universe. The domain
must be a dull type, stated internally, a term A : ♮U . The codomain can depend on this type in a
genuine way without the modality applied to it, but only linearly: this is a non-dull type family
B : A♮ ⊸ U . Given these inputs we can form the dependent hom, so the type former itself has type

“ ∏⃝” : ∏(A:♮U )(A♮ ⊸ U )→ U

So interestingly⃝∏ is a function of its domain and codomain types, not a hom.

Remark 1.5.4. The rules for ⊸-types produce the desired bijection of term judgements

p ≺ (r ≺ Φ)⊗ b | Γ, yb : B ⊢ c : C

r ≺ Φ | Γ ⊢ ∂y.c : B ⊸ C
============================
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via the β- and η- rules.
The entire context Γ is placed onto the left side of the tensor in the premise, and we are forbidden

from applying ⊸-INTRO when the context is not in this form: semantically we do not expect there
to be an operation

p ≺ (Φ, r⊗ b) | Γ, xr : A, yb : B ⊢ (. . .) : C

p ≺ (Φ, r) | Γ, xr : A ⊢ (. . .) : ?(B, C)
===================================

Remark 1.5.5. Here we reproduce a discussion from the original work on bunched type theo-
ries [OHe03]. We might be accustomed to thinking of linear functions as functions that use their
argument exactly once. This does not fit with the way variables in our theory behave: instead we
should think about sharing and resource access. The type A⊗ B describes disjoint resources, and
A ⊸ B describes functions that do not share resources with their arguments.

It is not enough for the body of the hom to use x exactly once, it also has to use the ambient
context in a linear way. So we cannot define a closed term A⊗ B ⊸ B⊗ A, similar to symA,B :
A⊗ B→ B⊗ A defined using the ordinary function type. Even though the body of the function

symA,B :≡ λp.(let x⊗ y = p in y⊗ x)

‘uses p exactly once’, it doesn’t use anything from the ambient context, so fails to satisfy this notion
of sharing.

Once we do have access to a resource, we can use it as many times as we like: for example,
suppose h : A ⊸ B. We can use this to define a hom

∂x.(h⟨x⟩, h⟨x⟩) : A ⊸ (B× B)

where the argument to the hom has been used twice. We are also free to not to use the argument at
all:

∂x.⋆ : A ⊸ 1

Like linear logic, we cannot convert a function A→ B to a hom A ⊸ B. But a second contrast to
linear logic is that we cannot in general convert homs A ⊸ B into functions A→ B. In intuitionistic
linear logic [Gir87], functions A→ B are interpreted as !A ⊸ B, and we can always go from A ⊸ B
to !A ⊸ B using dereliction. In our theory, however, we are blocked: if h : A ⊸ B and x : A, we
cannot linearly apply h to x because these terms share the ‘red’ resource of the context.

We can conclude that bunched type systems and intuitionistic linear logic are incomparable
extensions of the linear λ-calculus4 and the ordinary λ-calculus. These differences are why the
work on BI uses ∗ and −∗ as the type formers, to remind us that our intuitions from linear logic do
not apply. We prefer to stick with ⊗ and ⊸ because the operations are intended to be modelled by
an arbitrary symmetric monoidal closed structure, and ∗ suggests an operation with more structure.

4To be specific, the fragment of intuitionistic linear logic with only ⊗ and ⊸, called Rudimentary Linear Logic
by [GSS92] and Tensor-Implication Logic by [HP93].
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For several of the proofs in the following section, we will need to use hom extensionality. For
f , g :⃝∏ (x:A) B⟨x⟩, there is a canonical function

homapp( f , g) : ( f = g)→⃝∏ (x:A) f ⟨x⟩ = g⟨x⟩

given by path induction:

homapp( f , f )(refl f ) :≡ ∂x.refl f ⟨x⟩

Axiom Homext. For any f , g :⃝∏ (x:A) B⟨x⟩, the function homapp( f , g) is an equivalence.

We write homext( f , g) :⃝∏ (x:A)( f ⟨x⟩ = g⟨x⟩)→ ( f = g) for the inverse to homapp( f , g). From
this point on, we will assume hom extensionality holds. Univalence implies hom extensionality,
but we defer the proof of this fact to Section 1.5.5 to first build more experience working with homs.

A dependent version of the ⊸-type is necessary to state hom extensionality internally, even for
non-dependent ⊸-types.

1.5.2 Basic Properties of Hom

As expected, ⊸ is right adjoint to ⊗. There are different ways we might phrase this property
depending on what we think of as our ‘type of morphisms’. First we give a version that uses
another hom as the mediating arrow.

Proposition 1.5.6. For dull types A, B and C, there is an ‘internal’ adjunction

((A⊗ B) ⊸ C) ≃ (A ⊸ (B ⊸ C))

More dependently, let the top colour be yellow and suppose A : U , B : A→ U and C : (A⊗ B) ⊸ U . Then

⃝∏ (p:⃝∑ (x:A) B(x))C⟨p⟩ ≃ ⃝∏ (x:A)⃝∏ (y:B(x))C⟨x⊗ y⟩

Proof. The map in the forward direction is defined just as it was in the example above, even in the
dependent case: we send h to the hom

λh.∂x.∂y.h⟨x⊗ y⟩ :⃝∏ (x:A)⃝∏ (y:B(x))C⟨x⊗ y⟩

For the other direction, suppose f : ⃝∏ (p:⃝∑ (x:A) B(x)) C⟨p⟩. We wish to form a term of the hom
type ⃝∏ (x:A)⃝∏ (y:B(x)) C⟨x ⊗ y⟩, so we assume we have x : A and y : B(x), then we can form
f ⟨x⊗ y⟩ : C⟨x⊗ y⟩ which has the correct colour. So in all, we have

∂x.∂y. f ⟨x⊗ y⟩ :⃝∏ (x:A)⃝∏ (y:B(x))C⟨x⊗ y⟩

In the other direction, starting with g : ⃝∏ (x:A)⃝∏ (y:B(x)) C⟨x ⊗ y⟩, we define a hom of type
⃝∏ (p:⃝∑ (x:A) B(x)) C⟨p⟩ as follows. Introduce p : ⃝∑ (x:A) B(x) by ∂-abstraction. We would like to
do induction on p, but it does not have the top colour. Instead, use the stronger eliminator5 of

5Here we are cheating a little: we need to use the pattern-matching eliminator that allows the motive C to not be dull.
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Section 1.3.4 on g⊗ p to give g′ ⊗ (x⊗ y). Then we can apply g′ to x and y one at a time giving
g′⟨x⟩⟨y⟩ : C⟨x⊗ y⟩. In all:

∂p.let g′ ⊗ (x⊗ y) = g⊗ p in g′⟨x⟩⟨y⟩ :⃝∏ (p:⃝∑ (x:A) B(x))C⟨p⟩

Checking the round-trips is straightforward. One round-trip is definitionally the identity, using the
η-rule in the last steps.

∂x.∂y.
(
∂p.let g′ ⊗ (x⊗ y) = g⊗ p in g′⟨x⟩⟨y⟩

)
⟨x⊗ y⟩

≡ ∂x.∂y.let g′ ⊗ (x⊗ y) = g⊗ (x⊗ y) in g′⟨x⟩⟨y⟩
≡ ∂x.∂y.g⟨x⟩⟨y⟩
≡ ∂x.g⟨x⟩
≡ g

In the other direction, we will have to use uniqueness for ⊗ and hom extensionality. To be
completely explicit, let F denote the function defined by

F( f ⊗ p) :≡ let g′ ⊗ (x⊗ y) = (∂x.∂y. f ⟨x⊗ y⟩)⊗ p in g′⟨x⟩⟨y⟩

so that uniqueness for the triple eliminator yields a path(
let f ′ ⊗ (x′ ⊗ y′) = f ⊗ p in F( f ′ ⊗ (x′ ⊗ y′))

)
= F( f ⊗ p)

Now we can calculate

F( f ′ ⊗ (x′ ⊗ y′)) ≡ let g′ ⊗ (x⊗ y) = (∂x.∂y. f ′⟨x⊗ y⟩)⊗ (x′ ⊗ y′) in g′⟨x⟩⟨y⟩
≡ (∂x.∂y. f ′⟨x⊗ y⟩)⟨x′⟩⟨y′⟩
≡ f ′⟨x′ ⊗ y′⟩

so that

∂p.let g′ ⊗ (x⊗ y) = (∂x.∂y. f ⟨x⊗ y⟩)⊗ p in g′⟨x⟩⟨y⟩
≡ ∂p.F( f ⊗ p)

= ∂p.let f ′ ⊗ (x′ ⊗ y′) = f ⊗ p in F( f ′ ⊗ (x′ ⊗ y′))

≡ ∂p.let f ′ ⊗ (x′ ⊗ y′) = f ⊗ p in f ′⟨x′ ⊗ y′⟩

Another application of uniqueness in the other direction with

G( f ⊗ p) :≡ f ⟨p⟩

gives that

∂p.let f ′ ⊗ (x′ ⊗ y′) = f ⊗ p in f ′⟨x′ ⊗ y′⟩
≡ ∂p.let f ′ ⊗ (x′ ⊗ y′) = f ⊗ p in G( f ′ ⊗ (x′ ⊗ y′))

= ∂p.G( f ⊗ p)

≡ ∂p. f ⟨p⟩
≡ f

and we are done.
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Remark 1.5.7. The use of the triple eliminator here is a little awkward: again we are running
into the issue of only being permitted to apply ⊗-induction to terms of the top colour, which the
variable bound in a ∂-abstraction is not. In Section 1.6 we will derive rules for hom that allow us to
immediately pattern match on the argument. Given g : A ⊸ (B ⊸ C) we will be able to write

λ(x⊗ y).g⟨x⟩⟨y⟩ : A⊗ B ⊸ C,

avoiding the need to manually ‘copy’ g. The round-trip on A⊗ B ⊸ C will still be only proposi-
tionally equal to the identity, as we will only be able to derive a propositional η-principle for homs
with a pattern-matched argument.

Remark 1.5.8. The rules that linearly bind a variable (⊸-FORM and ⊸-INTRO) are the first rules
we have encountered that can cause the ambient top colour to appear in a term. We are finally
forced to explain the slight complication that arises when substituting for marked variables.

Suppose we are substituting for a marked variable usage x[a/xc]. Such a marked variable usage
can occur in any palette, including when the top colour label is no longer c, so suppose the terms
involved are

t ≺ Ψ | Γ, xc : A ⊢ x : A

c ≺ Φ | Γ ⊢ a : A

where A is a closed type. Typically t ≺ Ψ is some iterated extension of the palette c ≺ Φ.
As usual, we mark all the free variables in a giving

c | Γ ⊢ a : A,

but then rename the top colour to the ambient top colour at the site of x:

t | Γ ⊢ x[a/xc] :≡ at↔c : A

which is then silently weakened to

t ≺ Ψ | Γ ⊢ at↔c : A

To demonstrate, suppose the top colour is r, and suppose we have a term x : A. Then we can
define a hom

∂yb.x ⊗r b y : B ⊸ (A⊗ B)

(This is ‘coevaluation’ for the tensor-hom adjunction.) If this term is substituted for a marked
variable z in a context with top colour y, the free variable x is marked and the top colour is renamed,
giving

z[∂yb.x ⊗r b y/z] :≡ ∂yb.x ⊗y b y

We will see two examples of this in the following Lemma.

There is a second version of the tensor-hom adjunction, where the ‘type of morphisms’ is given
by the underlying space of the ordinary function type:
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Proposition 1.5.9. There is a dull ‘external’ adjunction

♮ ((A⊗ B)→ C) ≃ ♮ (A→ (B ⊸ C))

or more dependently, let the top colour be purple and suppose we have dull types A and B : A→ U , and a
dull type family C :⃝∑ (x:A) B(x)→ U .

♮
(

∏(p:⃝∑ (x:A) B(x))C(p)
)
≃ ♮

(
∏(x:A)⃝∏ (y:B(x))C(x⊗ y)

)
Proof. Say we have f : ∏(p:⃝∑ (x:A) B(x)) C(p). To build a term of the type on the right, assume we
have a term x : A and a term y : B(x) of a fresh colour. Then we can form f (x⊗ y) : C(x⊗ y). As a
term, we have defined the function

λx.∂y. f (x⊗ y) : ∏(x:A)⃝∏ (y:B(x))C(x⊗ y)

In the other direction suppose we have g : ∏(x:A)⃝∏ (y:B(x)) C(x⊗ y). To define a function of the
type on the left, use ⊗-induction to get x : A and y : B(x). Then we can form g(x)⟨y⟩ : C(x⊗ y).
As a term:

λp.let x⊗ y = p in g(x)⟨y⟩ : ∏(p:⃝∑ (x:A) B(x))C(p)

Checking the round-trips, first we substitute the first term in for g in the latter. Note that the top
colour at the usage of g is red, so the colour of x is changed:

λp.let x⊗ y = p in
(

λx.∂y. f (x⊗ y)
)
(x)⟨y⟩

≡ λp.let x⊗ y = p in f (x⊗ y)

= λp. f (p)

≡ f

Similarly, the top colour at the point f is used is the tensor combination of purple and yellow, and
so the colour of p is changed:

λx.∂y.
(

λp.let x⊗ y = p in g(x)⟨y⟩
)
(x⊗ y)

≡ λx.∂y.let x⊗ y = x⊗ y in g(x)⟨y⟩
≡ λx.∂y.g(x)⟨y⟩
≡ λx.g(x)

≡ g

This adjunction requires the ♮s guarding the two sides, and removing them makes the claim
false. The functions f and g must be marked for the function applications to be well-formed:
otherwise they would be purple terms, and the applications f (x⊗ y) and g(x) are not well formed.
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Remark 1.5.10. A curious consequence of this equivalence is obtained by combining it with
symmetry of ⊗:

♮(A→ (B ⊸ C)) ≃ ♮(A⊗ B ⊸ C) ≃ ♮(B⊗ A ⊸ C) ≃ ♮(B→ (A ⊸ C))

This is another reminder that linearity is not attached to a particular type in an expression; the
appearance that ‘B is linear’ on the left side and ‘A is linear’ on the right side is an illusion.

Definition 1.5.11. Given two homs, we can compose them if they are provided to us with ‘comple-
mentary colours’, i.e., as a term of a ⊗-type.

homcomp : (B ⊸ C)⊗ (A ⊸ B)→ (A ⊸ C)

homcomp(g⊗ f ) :≡ ∂x.g⟨ f ⟨x⟩⟩

If we have two homs of the same colour f : A ⊸ B and g : B ⊸ C, then there is no way to
compose them without using at least one of them marked.

Definition 1.5.12. For any type A define the identity hom homid : S→ (A ⊸ A) by

homid(s) :≡ ∂x.unitlA(s⊗ x) : A ⊸ A

Note that the term unitrA(s⊗ x) does not reduce. This function is equal to the transport of
unitlA : S⊗ A → A across the adjunction of Proposition 1.5.9, using the fact that unitlA is a dull
function.

Remark 1.5.13. We can also define composition for dependent homs. The types involved are
somewhat restricted by the linearity requirements of the type former. To satisfy any curiosity, here
is the best we can do: it is not pretty!

A : U
B : A→ U
C : ∏(x:A)B(x) ⊸ U

Then we can define

homcomp : ∏(p:(∏(x:A)⃝∏ (y:B(x)) C(x)⟨y⟩)⊗(⃝∏ (x:A) B(x)))

(
let g⊗ f = p in⃝∏ (x:A)C(x)⟨ f ⟨x⟩⟩

)
homcomp(g⊗ f ) :≡ ∂x.g(x)⟨ f ⟨x⟩⟩

The type former ⊸ is functorial in both components, in the sense that we can pre- and post-
compose with ordinary functions.

Definition 1.5.14. Let the top colour be red. Given f : A ⊸ B and g : B→ C, define postcomp(g, f ) :
A ⊸ C by

postcomp(g, f ) :≡ ∂x.g( f ⟨x⟩)

More dependently, suppose A : U , B : A ⊸ U and C : ⃝∏ (x:A) B⟨x⟩ → U . If we have a hom
f :⃝∏ (x:A) B⟨x⟩ and a dependent function g :⃝∏ (x:A) ∏(y:B⟨x⟩) C⟨x⟩(y), define

postcomp(g, f ) :⃝∏ (x:A)C⟨x⟩( f ⟨x⟩)
postcomp(g, f ) :≡ ∂x.g⟨x⟩( f ⟨x⟩)
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Similarly, we can define precomposition:

Definition 1.5.15. Given f : A→ B and g : B ⊸ C, define precomp(g, f ) : A ⊸ C by

precomp(g, f ) :≡ ∂x.g⟨ f (x)⟩

Precomposition does not have as pleasant a dependent generalisation: unlike postcomposition, we
are forced to use various inputs marked. Let A : U , B : A → U and C : ∏(x:A) B(x) ⊸ U . If we
have a function f : ∏(x:A) B(x) and a dependent hom g : ∏(x:A)⃝∏ (y:B(x)) C(x)⟨y⟩, define

precomp(g, f ) :⃝∏ (x:A)C(x)⟨ f (x)⟩
precomp(g, f ) :≡ ∂x.g(x)⟨ f (x)⟩

Like Theorem 1.1.15 for ordinary functions, homs into a space hold no more information than
functions of the base spaces.

Proposition 1.5.16. For dull types A and B

(A ⊸ ♮B) ≃ (A→ ♮B)

or dependently, if A : U and B : A→ U :

⃝∏ (x:A)♮B(x) ≃ ∏(x:A)♮B(x)

Proof. If f :⃝∏ (x:A) ♮B(x) define λa. f ⟨a⟩ : ∏(x:A) ♮B(x). For g : A→ ♮B define ∂a′.g(a′) : A ⊸ ♮B.
Round trips:

λa.(∂a′.g(a′))⟨a⟩ ≡ λa.g(a) ≡ λa.g(a) ≡ g

and

∂a′.(λa. f ⟨a⟩)(a′) ≡ ∂a′. f ⟨a′⟩ ≡ ∂a′. f ⟨a′⟩ ≡ f

where g(a′) ≡ g(a) and f ⟨a′⟩ ≡ f ⟨a′⟩ because they are both terms of type ♮B.

We have a kind of mixed currying for spaces.

Proposition 1.5.17. If A, B and C are dull types then:

A ⊸ (♮B→ C) ≃ (A× ♮B) ⊸ C

♮A→ (B ⊸ C) ≃ (♮A× B) ⊸ C

Or dependently, if A : U , B : A→ U and C :⃝∏ (a:A)(♮B(a)→ U ) then

⃝∏ (a:A)∏(b:♮B(a))C⟨a⟩(b) ≃ ⃝∏ ((a,b):∑(a:A) ♮B(a))C⟨a⟩(b)

and if D : U , E : ♮D → U and F : ∏(d:♮D)(E(d) ⊸ U ) then

∏(d:♮D)⃝∏ (e:E(a))F(d)⟨e⟩ ≃ ⃝∏ ((d,e):∑(d:♮D) E(d))F(d)⟨e⟩
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Proof. Straightforward, the maps are:

f 7→ ∂(a, b). f ⟨a⟩(b) : (A ⊸ (♮B→ C))→ ((A× ♮B) ⊸ C)

g 7→ ∂a.λb.g⟨(a, b)⟩ : ((A× ♮B) ⊸ C) → (A ⊸ (♮B→ C))

h 7→ ∂(a, b).h(a)⟨b⟩ : (♮A→ (B ⊸ C))→ ((♮A× B) ⊸ C)

k 7→ λa.∂b.k⟨(a, b)⟩ : ((♮A× B) ⊸ C) → (♮A→ (B ⊸ C))

and the round-trips are definitionally the identity, because all types concerned have definitional
η-rules.

Like Lemma 1.3.24, if a hom and its argument are both dull then the split chosen when applying
the hom is irrelevant.

Meta-Lemma 1.5.18. For dull h :⃝∏ (xb:A) B⟨x⟩ and a : B, given two splits sL ⊠ sR split and tL ⊠ tR split,
there is an equality

hsL⟨a⟩sR = htL⟨a⟩tR

Proof. Any hom-application hsL⟨a⟩sR can be rewritten in the following way, by the computation
rule for ⊗:

hsL⟨a⟩sR ≡
(
let h′ ⊗l r a′ = h ⊗sL sR

a in h′l⟨a′⟩r
)

And now we can apply split irrelevance for dull ⊗-pairs (Lemma 1.3.24):

hsL⟨a⟩sR ≡
(
let h′ ⊗l r a′ = h ⊗sL sR

a in h′l⟨a′⟩r
)

=
(
let h′ ⊗l r a′ = h ⊗tL tR

a in h′l⟨a′⟩r
)

≡ htL⟨a⟩tR

1.5.3 Preservation of (Co)Limits

As a right adjoint, we would expect⃝∏ to preserve Σ, and indeed it does:

Proposition 1.5.19 (⊸ preserves Σ). Suppose A, B, C : U . Then:

A ⊸ (B× C) ≃ (A ⊸ B)× (A ⊸ C)

More dependently, suppose C : B→ U , then:

A ⊸ ∑(y:B)C(y) ≃ ∑(g:A⊸B)⃝∏ (x:A)C(g⟨x⟩)

Most dependently of all, suppose we have type families B : A ⊸ U and C :⃝∏ (x:A)(B⟨x⟩ → U ), then:

⃝∏ (x:A)∑(y:B⟨x⟩)C⟨x⟩(y) ≃ ∑(g:⃝∏ (x:A) B⟨x⟩)⃝∏ (x:A)C⟨x⟩(g⟨x⟩)
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Proof. Defining round-trips, given a f : ⃝∏ (x:A) ∑(y:B⟨x⟩) C⟨x⟩(y) on the left, we can first define a
hom of type⃝∏ (x:A) B⟨x⟩ by ∂x.pr1( f ⟨x⟩). In the second component we can use

∂x.pr2( f ⟨x⟩) :⃝∏ (x:A)C⟨x⟩(pr1( f ⟨x⟩))

so

(∂x.pr1( f ⟨x⟩), ∂x.pr2( f ⟨x⟩)) : ∑(g:⃝∏ (x:A) B⟨x⟩)⃝∏ (x:A)C⟨x⟩(g⟨x⟩)

In the other direction, given

(g, h) : ∑(g:⃝∏ (x:A) B⟨x⟩)⃝∏ (x:A)C⟨x⟩(g⟨x⟩)

we have

∂x.(g⟨x⟩, h⟨x⟩) :⃝∏ (x:A)∑(y:B⟨x⟩)C⟨x⟩(y)

The round-trips are both definitionally equal to the identity, thanks to the η-laws for Σ and⃝∏ .

To define the action of homs on paths, we have to be a little careful how the data is supplied:

Definition 1.5.20. For any h : A ⊸ B, there is a hom

hap :⃝∏ ((x,y,p):∑(x:A) ∑(y:A) x=y)h⟨x⟩ = h⟨y⟩

defined by pattern matching:

hap :≡ ∂(x, x, reflx).reflh⟨x⟩

Because of the ‘external adjunction’ of Proposition 1.5.9, we should not be too surprised that
hom commutes with colimits in the domain:

Theorem 1.5.21. Suppose A, B, S : U with f : S→ A and g : S→ B. Then given the data

h : A ⊸ C

k : B ⊸ C

H :⃝∏ (s:S)precomp(h, f )⟨s⟩ = precomp(k, g)⟨s⟩

there is an induced hom

lind+(h, k, H) : A +S B ⊸ C

such that

lind+(h, k, H)⟨inl(a)⟩ ≡ h⟨a⟩
lind+(h, k, H)⟨inr(b)⟩ ≡ k⟨b⟩

hap(lind+(h, k, H))⟨glue(s)⟩ = H⟨s⟩
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There is a nice alignment of dullness conditions in this statement: precomp can only be defined
to use the second argument in a dull way.

Proof. Begin by using ∂-introduction to give t : A +S B. Then we can use ordinary +-induction to
form a function

I(t) :≡ ind+(a.∂(h′, k′, H′).h′⟨a⟩,
b.∂(h′, k′, H′).k′⟨b⟩,
s.homext(∂(h′, k′, H′).H′⟨s⟩),
t)

:
(

∑(h′ :A⊸C)∑(k′ :B⊸C)⃝∏ (s:S)precomp(h′, f )⟨s⟩ = precomp(k′, g)⟨s⟩
)
⊸ C

which can then be applied to the supplied data to give I(t)⟨h, k, H⟩ : C. The computation rules
for inl and inr hold by the computation rules for ⊸ and +: the argument is substituted in for
t and then ordinary ind+ computes. For glue, we need a quick fact about commuting hap with
hom-application.

Suppose we have dull types A, B, C, a function f : A → B ⊸ C, a term b : B and a path
p : a = a′. Then there is a path

hap∂x. f (x)⟨b⟩⟨p⟩ = homapp(ap f (p))⟨b⟩

given by pattern matching on b⊗ p as b⊗ refla, so that both sides reduce to refl f (a)⟨b⟩.
In our case, this gives

hap(lind+(h, k, H))⟨glue(s)⟩
≡ hap∂t.I(t)⟨h,k,H⟩⟨glue(s)⟩
= homapp(apI(glue(s)))⟨h, k, H⟩
= homapp(homext(∂(h′, k′, H′).H′⟨s⟩))⟨h, k, H⟩
= (∂(h′, k′, H′).H′⟨s⟩)⟨h, k, H⟩
≡ H⟨s⟩

1.5.4 Axiomatic Closedness of the Modality

In our primary models of interest, ♮ is a closed monoidal functor: it takes⃝∏ -types to Π-types. This
does not follow from the rules of the theory, so we add it as an axiom:

Axiom C. ♮ is a closed functor, i.e. for A : U and B : A ⊸ U , the map

distA,B : ♮
(
⃝∏ (a:A)B⟨a⟩

)
→

(
∏(x:♮A)♮(B⟨x♮⟩)

)
defined by

distA,B(h♮)(x♮) :≡ (h1⟨x⟩1)♮

is an equivalence.
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Non-dependently this is just ♮(A ⊸ B) ≃ (♮A→ ♮B).

Remark 1.5.22. There is a map the other way(
∏(x:♮A)♮(B⟨x♮⟩)

)
→ ♮

(
⃝∏ (a:A)B⟨a⟩

)
given by

undistA,B( f ) :≡ (∂a. f (a♮)♮)♮

which is always a section of distA,B. Without the axiom, the round-trip on the ⊸-type is nearly but
not quite the identity:

(∂a.(λx.h1⟨x♮⟩1♮)(a♮)♮)♮ ≡ (∂a.h1⟨a♮♮⟩1♮♮)♮ ≡ (∂a.h1⟨a⟩1)♮

but the η-law for homs doesn’t apply: the argument a is marked. The axiom makes this hom equal
to h♮, so a syntactic gloss on the axiom is that ‘any dull hom uses its argument dull’.

We can apply this to the hom B : A ⊸ U used in the dependent type-former itself: the map

♮
(
⃝∏ (a:A)B⟨a⟩

)
→ ♮

(
⃝∏ (a:A)B⟨a⟩

)
is an equivalence, so we could have phrased the axiom using the type on the left without increasing
its power.

Axiom C is not provable in the bare type theory. Any proof that it is could be translated to a
similar proof for Π simply by replacing each instance of a⃝∏ -type with a Π-type, and it is certainly
not the case that ♮ is a closed functor for Π:

Proposition 1.5.23. If the canonical map

funcA,B : ♮(A→ A)→ (♮A→ ♮A)

funcA,B( f ♮)(x♮) :≡ ( f (x))♮

is an equivalence, then the ♮ modality is equal to the identity modality.

Proof. funcA,B already has a section, given by f 7→ (λx. f (x♮)♮)♮. If the composite the other way

♮(A→ A)→ (♮A→ ♮A)→ ♮(A→ A)

is the identity, then applying this composite to idA
♮ yields (λx.x)♮, so idA = (λx.x).

Therefore, for any a : A we have a = a by applying the two equal functions, and so ♮A ≃ A
by Corollary 1.1.13. If this holds for any type, in particular it holds for the universe, so for any
A : U we have A = A, and so also ♮A ≃ A. And so the ♮ modality is equal to the identity, because
modalities are determined by their modal types [RSS20, Theorem 1.12].

The axiom has a number of important consequences. We mark any result that requires Axiom C
with {C}.
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Proposition {C} 1.5.24. Writing the top colour as purple, for any space X and dull type A the maps

(x⊗ y) 7→ (x, y♮) : X⊗ A→ X× ♮A

(x, n) 7→ (x ⊗p 1 n♮) : X× ♮A→ X⊗ A

are inverse equivalences, so in particular 1⊗ A ≃ ♮A.

Proof. There is a typical adjointness argument:

♮(X⊗ A→ Y) ≃ ♮(X → (A ⊸ Y))

≃ ♮(♮X → (A ⊸ Y))

≃ ♮(X → ♮(A ⊸ Y))

≃ ♮(X → (♮A→ ♮Y))

≃ ♮(X× ♮A→ ♮Y)

≃ ♮(X× ♮A→ Y)

But there is an arguably more direct method. The round-trip on X× ♮A is clearly the identity,
as both factors are spaces. For the other composite, we must show that given x : X and y : A, there
is a path (x ⊗p 1 y) = (x⊗ y).

Note that for fixed x : X, the (red) hom

∂a.x ⊗r y a : A ⊸ (X⊗ A)

is dull. By the axiom, it is therefore equal to

∂a.x ⊗r 1 a

and we can make the following calculation:

x ⊗r b y = x ⊗r b y ≡ (∂a.x ⊗r y a)⟨y⟩ = (∂a.x ⊗r 1 a)⟨y⟩ ≡ x ⊗r 1 y

and finally x ⊗r 1 y = x ⊗p 1 y by Lemma 1.3.24.

Proposition 1.5.16 told us that homs into spaces are given by ordinary functions of the base
spaces. It follows from Axiom C that the same is true for homs out of spaces. This is quite different
to the ordinary function types, where ♮A→ B is typically not a space.

Proposition {C} 1.5.25. For A a type and X a space, the map

h 7→ (λx.h1⟨x⟩1)♮ : (X ⊸ A)→ ♮(X → A)

is an equivalence.

Proof. There is an adjointness argument:

♮(B→ (X ⊸ A)) ≃ ♮(B⊗ X → A)

≃ ♮(♮B× X → A)

≃ ♮(♮B→ (X → A))

≃ ♮(B→ ♮(X → A))
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Corollary {C} 1.5.26. 1 ⊸ A ≃ ♮A

This Corollary provides an alternative perspective on the self-adjointness of ♮: together with
Proposition 1.5.9, we see

♮(♮A→ B) ≃ ♮(A⊗ 1→ B) ≃ ♮(A→ (1 ⊸ B)) ≃ ♮(A→ ♮B)

Remark 1.5.27. Proposition 1.5.24 is reminiscent of ‘dull split irrelevance’ (Lemma 1.3.24) which
stated that if the two sides of a ⊗-INTRO are dull, then the choice of split used to form the pair is
irrelevant. This proposition is an upgraded version of that idea: it is enough for one side to be dull,
and then the split becomes irrelevant. If we did manage to build this one-sided irrelevance into the
type theory definitionally, then we could define ♮A :≡ 1 ⊸ A thanks to the previous Corollary.

1.5.5 Univalence Implies Hom Extensionality

Let us write the top colour as red throughout this section. Recall that for f , g :⃝∏ (x:A) B⟨x⟩, there is
a canonical function

homapp( f , g) : ( f = g)→⃝∏ (x:A) f ⟨x⟩ = g⟨x⟩

given by path induction:

homapp( f , f )(refl f ) :≡ ∂x.refl f ⟨x⟩

Axiom Homext. For any f , g :⃝∏ (x:A) B⟨x⟩, the function homapp( f , g) is an equivalence.

Univalence implies hom extensionality. We adapt the proof of ordinary function extension-
ality given in the HoTT-Agda library [HoTTAgda, Funext], checking carefully that the linearity
constraints are satisfied. We do not require Axiom C in this section.

As in the proof of ordinary function extensionality, our argument proceeds in two steps. First
we show that univalence implies a weak form of hom extensionality, and then that weak hom
extensionality implies hom extensionality.

Lemma {UA} 1.5.28. Without assuming hom extensionality, any equivalence e : B ≃ B′ induces an
equivalence (A ⊸ B) ≃ (A ⊸ B′) by postcomposition with e, in the sense of Definition 1.5.14.

Proof. The equivalence e is the image of some p : B = B′ under univalence. By path induction,
assume p ≡ reflB, so e = idB. Then postcomposition with e is an equivalence, by transporting the
proof that postcomposition with idB is the identity across the equality e = idB.

Proposition {UA} 1.5.29. ‘Naive’ hom extensionality holds when the codomain is non-dependent and dull:
for any f , g : A ⊸ B there is a map

(
⃝∏ (x:A) f ⟨x⟩ = g⟨x⟩

)
→ ( f = g).

Proof. Given two homs f , g : A ⊸ B, and h :⃝∏ (x:A) f ⟨x⟩ = g⟨x⟩, define two homs

d, e : A ⊸
(

∑(y:B)∑(y′ :B)y = y′
)

d :≡ ∂x.( f ⟨x⟩, f ⟨x⟩, refl f ⟨x⟩)

e :≡ ∂x.( f ⟨x⟩, g⟨x⟩, h⟨x⟩)
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We can now pull the same trick used for ordinary functions. The projection

pr1 : ∑(y:B)∑(y′ :B)(y = y′)→ B

is an equivalence, and so by the previous lemma there is an equivalence

postcomp(pr1,−) :
[

A ⊸
(

∑(y:B)∑(y′ :B)y = y′
)]
→ [A ⊸ B]

The homs d and e become equal under this postcomposition, because

postcomp(pr1, d) ≡ ∂x.pr1(d⟨x⟩) ≡ ∂x.pr1( f ⟨x⟩, f ⟨x⟩, refl f ⟨x⟩)≡ ∂x. f ⟨x⟩ ≡ f

postcomp(pr1, e) ≡ ∂x.pr1(e⟨x⟩) ≡ ∂x.pr1( f ⟨x⟩, g⟨x⟩, h⟨x⟩) ≡ ∂x. f ⟨x⟩ ≡ f

so in fact d = e.
Now, ap of postcomp(pr2,−) on this path yield a path postcomp(pr2, d) = postcomp(pr2, e),

whose sides similarly compute to f and g.

We now show that univalence implies weak hom extensionality.

Definition 1.5.30. The weak hom extensionality principle asserts that there is a function

⃝∏ (x:A)isContr(B⟨x⟩)→ isContr
(
⃝∏ (x:A)B⟨x⟩

)
for any linear family B : A ⊸ U .

First, an easy Lemma:

Lemma 1.5.31. For any dull type A, the hom type A ⊸ 1 is contractible.

Proof. For any hom f : A ⊸ 1 we have f ≡ ∂x. f ⟨x⟩ ≡ ∂x.⋆ by η-expansion for ⊸ and 1.

Proposition {UA} 1.5.32. Weak hom extensionality holds.

Proof. Suppose we have B : A ⊸ U and w :⃝∏ (x:A) isContr(B⟨x⟩). From w and univalence we can
build a term of⃝∏ (x:A)(B⟨x⟩ = 1). Then naive hom extensionality (Proposition 1.5.29) for the type
A ⊸ U gives a path p : B = (∂x.1).

Let F(B′) :≡ ⃝∏ (x:A) B′⟨x⟩. Then

apF(p) :
(
⃝∏ (x:A)B⟨x⟩

)
= (A ⊸ 1)

Transporting the proof of isContr(A ⊸ 1) from the previous Lemma along this path gives a
proof of isContr

(
⃝∏ (x:A) B⟨x⟩

)
as desired.

This ap makes sense because ⊸-FORM is a function of its inputs, not a hom, as highlighted in
Remark 1.5.3.

Theorem 1.5.33. Weak hom extensionality implies hom extensionality.
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Proof. We wish to show that for all f , g : ⃝∏ (x:A) B⟨x⟩, the map homapp( f , g) : ( f = g) →
⃝∏ (x:A) f ⟨x⟩ = g⟨x⟩ is an equivalence. Fixing an f and working fibrewise, it is enough to show that
the map (

∑(g:⃝∏ (x:A) B⟨x⟩)( f = g)
)
→

(
∑(g:⃝∏ (x:A) B⟨x⟩)⃝∏ (x:A) f ⟨x⟩ = g⟨x⟩

)
given by λ(g, p).(g, homapp( f , g)(p)) is an equivalence. The type on the left of the arrow is con-
tractible by singleton contractibility, so it just remains to show that

∑(g:⃝∏ (x:A) B⟨x⟩)⃝∏ (x:A) f ⟨x⟩ = g⟨x⟩

is also contractible. By Proposition 1.5.19, this type is equivalent to

⃝∏ (x:A)∑(y:B⟨x⟩) f ⟨x⟩ = y

This is a hom into a family of contractible types, so is contractible by the weak hom extensionality
principle.

Corollary {UA} 1.5.34. Hom extensionality holds.

1.5.6 Linear Equivalence is Ordinary Equivalence

One may ask whether the hom type grants access to any new notion of equivalence between types.
One option is to ape the ordinary definition of an equivalence, with homs replacing the functions.
Let r denote the top colour. To have access to an identity hom (Definition 1.5.12), we must have
access to a term of S, and to compose two homs (Definition 1.5.11), we must have them tensored
together, leading to the following awkward definition.

Definition 1.5.35. For a dull map h : S→ A ⊸ B, a left inverse of h is a dull map k : S→ B ⊸ A
such that for all s : S,

homcomp(h(s) ⊗r ∅ k(◊)) = homid(s)

and similarly for right inverse.

Definition 1.5.36. For dull types A and B, a map h : S→ A ⊸ B is a linear equivalence if it has a left
inverse and a right inverse.

Remark 1.5.37. This precise notion of linear equivalence was studied in [Lun18, §4.3]. In that
theory, there is a separation between ordinary and linear types, and a corresponding separation of
ordinary and linear and context zones. A linear equivalence (as defined there) involves homs with
an empty linear context. An empty linear context represents the monoidal unit, and so this matches
our definition.

Under the equivalence of Proposition 1.5.9 and using unitlA, dull maps h : S → A ⊸ B
correspond to dull maps f : A→ B, by

ϕ(h)(a) :≡ h(◊)∅⟨a⟩r
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Proposition 1.5.38. A hom h : S→ A ⊸ B is a linear equivalence iff the associated map ϕ(h) : A→ B is
an ordinary equivalence.

Proof. Suppose k : S→ B ⊸ A is a left-inverse, so

λs.homcomp(h(◊) ⊗∅ r k(s)) = homidA

Transposing across the adjunction, this is equivalent to an equality

λp.let s⊗ a = p inhomcomp(h(◊) ⊗∅ r k(s))⟨a⟩ = unitlA

of function S⊗ A→ A. Working on the left-hand side, inlining the definition of homcomp gives

λp.let s⊗ a = p in h(◊)∅⟨k(s)r⟨a⟩y⟩r⊗y

which by the uniqueness principle for the unitor, is equal to

λp.let ◊ ⊗∅ y a = p in h(◊)∅⟨k(◊)∅⟨a⟩y⟩y

But this is now precisely equal to

ϕ(h) ◦ ϕ(k) ◦ unitlA

So k : S→ B ⊸ A is a left-inverse to h : S→ A ⊸ B iff ϕ(h) is a left-inverse to ϕ(k) in the ordinary
sense.

The same is true for right-inverse and we are done.

1.6 Pattern Matching

As promised in Section 1.3.4, we can use ⊸ to derive some stronger induction principles for ⊗,
for example allowing us to assume a term s : (A ⊗ B) ⊗ C is of the form s ≡ (x ⊗ y) ⊗ z. Put
simply, the idea is to use ⊸ to shuffle pieces of the palette ‘out of the way’, so that we can apply
⊗-induction at the top level. We first show that the induction principles that we used in previous
sections (Figure 1.15) are derivable in this way.

This strategy does not work for all the induction principles we hope for, so we then describe an
inductive collection of patterns [Coq92]. These will allow us to deconstruct any nested combination
of 1/Σ/Id/♮/S/⊗-types simultaneously.

1.6.1 Derivable Eliminators

As an easy warm-up, let us a show that an induction principle for (A⊗ B)⊗ C is derivable, where
there is no internal dependency of A, B and C, and the motive D is a dull type.

Proposition 1.6.1 (Simple Left-Associated Elim). The rule

⊗-ELIM-SIMPLE-TRIPLE

t | Γ ⊢ D type

t ≺ (l ≺ l′ ⊗ r′)⊗ r | Γ, xl′ : A, yr
′

: B, zr : C ⊢ d : D
t ≺ Φ | Γ ⊢ s : (A⊗ B)⊗ C

t ≺ Φ | Γ ⊢ let (x ⊗l′ r′ y) ⊗l r z = s in d : D
−−−−−−−−−−−−−−−−−−−−−−−−−−−
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(let (x ⊗l′ r′ y) ⊗l r z = (a ⊗sLL sLR
b) ⊗sL sR

c in d)

≡ d[sLL/l′ ⊗ sLR/r′ | a/x, b/y][c/z][(t ≺ sL ⊠ sR/t)]

is derivable.

Proof. First, we can use d to form a dull term

l′ | Γ ⊢ λx.∂lyr
′
.∂tzr.d : A→ B ⊸ C ⊸ D

To make things line up better below, let us rename t to t′, and l′ to t (by the RECOLOUR rule).

t | Γ ⊢ λx.∂lyr
′
.∂t
′
zr.dt

′↔t,t↔l′ : A→ B ⊸ C ⊸ D

It will suffice to produce a function

T : (A→ B ⊸ C ⊸ D)→ ((A⊗ B)⊗ C → D)

because we can then define the triple eliminator as

(let (x ⊗l′ r′ y) ⊗l r z = s in d) :≡ T(λx.∂lyr
′
.∂t
′
zr.dt

′↔t,t↔l′)(s)

This T can be defined by two uses of Proposition 1.5.9, but because its computational behaviour
is important for achieving the correct computation rule, let us define it directly. Suppose we have
such an f : A → B ⊸ C ⊸ D and a term s : (A⊗ B)⊗ C. First apply ⊗-induction to s giving
pl : A⊗ B and zr0

0 : C. We cannot do ⊗-induction on p immediately, but we can use p to build a
hom and then apply it to z0. To build a purple coloured hom, do a ⊗-induction on p to get xl′ and
yr
′
, then form

∂z. f (x)⟨y⟩⟨z⟩ : C ⊸ D

Finally, apply this hom to z0. In all:

let p ⊗l r0
z0 = s in

(
let x ⊗l′ r′ y = p in (∂t′zr. f (x)⟨y⟩⟨z⟩)

)
l⟨z0⟩r0 : D

Now, we can calculate

T(λx.∂lyr
′
.∂t
′
zr.dt

′↔t,t↔l′)((a ⊗sLL sLR
b) ⊗sL sR

c)

≡ let p ⊗l r0
z0 = (a ⊗sLL sLR

b) ⊗sL sR
c in

(
let x ⊗l′ r′ y = p in (∂t′zr. f (x)⟨y⟩⟨z⟩)

)
l⟨z0⟩r0

≡ let p ⊗l r0
z0 = (a ⊗sLL sLR

b) ⊗sL sR
c in

(
let x ⊗l′ r′ y = p in (∂t′zr.dt

′↔t,t↔l′)
)

l⟨z0⟩r0

≡
(
let x ⊗l′ r′ y = (a ⊗sLL sLR

b) in (∂t′zr.dt
′↔t,t↔l′)

)
sL⟨c⟩sR

≡ (∂t′zr.dt
′↔t,t↔l′ [sLL/l′ ⊗ sLR/r′ | a/x, b/y])sL⟨c⟩sR

≡ dt
′↔t,t↔l′ [sLL/l′ ⊗ sLR/r′ | a/x, b/y][c/z][(t ≺ sL ⊠ sR/t′)]

≡ d[sLL/l′ ⊗ sLR/r′ | a/x, b/y][c/z][(t ≺ sL ⊠ sR/t)]
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The definition of T here uses its argument marked, which is what restricts the branch d : D to
only use the ambient context marked.

Next, we allow internal dependency of (A⊗ B)⊗ C, and the dependency of D on the tensor.

Proposition 1.6.2 (Left-Associated Triple Elim). The rule

⊗-ELIM-TRIPLE-LEFT

t | Γ, wt :⃝∑ (p:⃝∑ (x:A) B)(let x⊗ y = p inC) ⊢ D type

t ≺ (l ≺ l′ ⊗ r′)⊗ r | Γ, xl′ : A, yr
′

: B, zr : C ⊢ d : D[(x ⊗l′ r′ y) ⊗l r z/w]

t ≺ Φ | Γ ⊢ s :⃝∑ (p:⃝∑ (x:A) B)(let x⊗ y = p inC)

t ≺ Φ | Γ ⊢ let (x ⊗l′ r′ y) ⊗l r z = s in d : D[s/w]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(let (x ⊗l′ r′ y) ⊗l r z = (a ⊗sLL sLR
b) ⊗sL sR

c in d)

≡ d[sLL/l′ ⊗ sLR/r′ | a/x, b/y][c/z][(t ≺ sL ⊠ sR/t)]

is derivable.

Proof. The construction is identical but the types are a little more complicated, so we work through
it again.

We are trying to define a function

T :
(

∏(x:A)⃝∏ (y:B)⃝∏ (z:C)D
t′↔t,t↔l′ [(x⊗ y)⊗ c/w]

)
→

(
∏(w:⃝∑

(p:⃝∑ (x:A) B)
(let x⊗y=p inC))D

)
Given an s :⃝∑ (p:⃝∑ (x:A) B)(let x⊗ y = p inC) we can first apply ⊗-induction giving pl :⃝∑ (x:A) B

and zr0
0 : (let x⊗ y = p inC), so the goal is now a term of type D[p ⊗l r0

z0/w]. We cannot do
⊗-induction on p, but we can use p to build a hom h and then apply it to z0. For the hom, take

h :⃝∏ (zr :(let x⊗y=p inC))D
t′↔t[p ⊗l r z/w]

h :≡ let x ⊗l′ r′ y = p in (∂t′zr.dt′↔t)

Now applying this hom to z0 gives a term hl⟨z0⟩r0 of type

(Dt′↔t[p ⊗l r z/w])[z0/z][(t ≺ l⊠ r0/t′)]

≡ (Dt↔t′ [p ⊗l r0
z0/w])t′↔t

≡ D[p ⊗l r0
z0/w]

which was our goal.
Now if this is applied to (a ⊗sLL sLR

b) ⊗sL sR
c then we can compute

let p ⊗l r0
z0 = (a ⊗sLL sLR

b) ⊗sL sR
c in hl⟨z0⟩r0

≡ h[a ⊗sLL sLR
b/p]sL⟨c⟩sR

≡
(
let x ⊗l′ r′ y = a ⊗sLL sLR

b in (∂t′zr.dt↔t′)
)

sL⟨c⟩sR

≡
(
(∂t′zr.dt↔t′)[sLL/l′ ⊗ sLR/r′ | a/x, b/y]

)
sL⟨c⟩sR

≡ (∂t′zr.dt↔t′ [sLL/l′ ⊗ sLR/r′ | a/x, b/y])sL⟨c⟩sR

≡ dt↔t′ [sLL/l′ ⊗ sLR/r′ | a/x, b/y][c/z][(t ≺ sL ⊠ sR/t′)]

≡ d[sLL/l′ ⊗ sLR/r′ | a/x, b/y][c/z][(t ≺ sL ⊠ sR/t)]
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To derive the eliminator for the right-associated triple tensor, our strategy is to use Proposi-
tion 1.3.13 to replace the dependent tensor with a non-dependent one, apply symmetry to produce
a left-associated triple tensor, and then use the above left-associated eliminator which we already
know is derivable. We inline the equivalence of Proposition 1.3.13 into our argument because, as
before, it is important that the construction computes correctly.

Proposition 1.6.3 (Right-Associated Triple Elim). The rule

⊗-ELIM-TRIPLE-RIGHT

t | Γ, wt :⃝∑ (x:A)⃝∑ (y:B)C ⊢ D type

t ≺ l⊗ (r ≺ l′ ⊗ r′) | Γ, xl : A, yl
′

: B, zr
′

: C ⊢ d : D[x ⊗l r (y ⊗l′ r′ z)/w]

t ≺ Φ | Γ ⊢ s :⃝∑ (x:A)⃝∑ (y:B)C

t ≺ Φ | Γ ⊢ let x ⊗l r (y ⊗l′ r′ z) = s in d : D[s/w]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(let x ⊗l r (y ⊗l′ r′ z) = a ⊗sL sR
(b ⊗sRL sRR

c) in d)

≡ d[a/x][sRL/l′ ⊗ sRR/r′ | b/y, c/z][(t ≺ sR ⊠ sL/t)]

is derivable.

Proof. Begin by applying ⊗-induction to s : ⃝∑ (x:A)⃝∑ (y:B) C giving variables of type xl0
0 : A and

qr :⃝∑ (y:B[x0/x]) C[x0/x], so the goal is now D[x0 ⊗l0 r q/s].
We are about to apply the left-associated to q⊗ x0 as in q⊗ x0 ≡ (y3 ⊗l′ r′ z3) ⊗r l x3. The problem

is that the types of y3 and z3 will continue to depend on x0 : A, rather than the new variable x3.
Our strategy is to smuggle a path e : x0 = x into the motive in the following way: we perform
left-associated induction on q⊗ x0 with motive

∏(e:x0=pr2(v))
let (y2 ⊗ z2)⊗ x2 = v in D[x2 ⊗ (e∗(y2)⊗ e∗(z2))/w]

This type is dull with respect to the ambient context, as v is the only free variable used unmarked,
and so this use of the left-associated triple eliminator as given in Proposition 1.6.2 is valid.

And so we may assume q⊗ x0 ≡ (y3 ⊗l′ r′ z3) ⊗r l x3, and our goal is(
∏(e:x0=pr2(v))

let (y2 ⊗ z2)⊗ x2 = v in D[x2 ⊗ (e∗(y2)⊗ e∗(z2))/w]
)
[(y3 ⊗l′ r′ z3) ⊗r l x3/v]

≡ ∏(e:x0=pr2((y3⊗z3)⊗x3))let (y2 ⊗ z2)⊗ x2 = (y3 ⊗l′ r′ z3) ⊗r l x3 in D[x2 ⊗ (e∗(y2)⊗ e∗(z2))/w]

≡ ∏(e:x0=x3)D[x3 ⊗l r (e∗(y3) ⊗l′ r′ e∗(z3))/w]

Inhabiting this type is simple enough, after weakening d with x3, y3 and z3 we can form

λe.d[x3/x][l′/l′ ⊗ r′/r′ | e∗(y3)/y, e∗(z3)/z][(t ≺ l⊠ r/t)]

The result of this left-associated induction has type

∏(e:x0=pr2(q⊗x0))let (y2 ⊗ z2)⊗ x2 = q⊗ x0 in D[x2 ⊗ (e∗(y2)⊗ e∗(z2))/w]
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The endpoint of the path pr2(q⊗ x0) computes to x0, so we can apply this function to reflx0 yielding

let (y2 ⊗ z2)⊗ x2 = q⊗ x0 in D[x2 ⊗ (y2 ⊗ z2)/w]

As in Proposition 1.3.6 for the binary eliminator, the left-associated eliminator satisfies a unique-
ness principle, in general giving a path

a[t/w] ≡ let (x⊗ y)⊗ z) = t in a[(x⊗ y)⊗ z/w]

In the present case, this gives a family of paths

U(t) : (let (y2 ⊗ z2)⊗ x2 = t in D[x2 ⊗ (y2 ⊗ z2)/w]) = D[t/w]

Transporting along the path U(q⊗ x0) gives a term of type D[q⊗ x0/w], which was our original
goal.

All together, we have constructed the term

let x0 ⊗l0 r q = s inU(q ⊗r l0
x0)∗

(
let (y3 ⊗ z3)⊗ x3 = q ⊗r l0

x0 in

λe.d[x3/x][l′/l′ ⊗ r′/r′ | e∗(y3)/y, e∗(z3)/z][(t ≺ l⊠ r/t)]
)
(reflx0)

Finally, when provided an actual triple, everything computes away:

let x0 ⊗l0 r q = a ⊗sL sR
(b ⊗sRL sRR

c) inU(q ⊗r l0
x0)∗

(
let (y3 ⊗ z3)⊗ x3 = q ⊗r l0

x0 inλe.(. . .)
)
(reflx0)

≡ U((b ⊗sRL sRR
c) ⊗sR sL

a)∗
(
let (y3 ⊗ z3)⊗ x3 = (b ⊗sRL sRR

c) ⊗sR sL
a inλe.(. . .)

)
(refla)

≡ refl−∗
(
let (y3 ⊗ z3)⊗ x3 = (b ⊗sRL sRR

c) ⊗sR sL
a inλe.(. . .)

)
(refla)

≡
(
let (y3 ⊗ z3)⊗ x3 = (b ⊗sRL sRR

c) ⊗sR sL
a inλe.(. . .)

)
(refla)

≡
(
λe.d[a/x][sRL/l′ ⊗ sRR/r′ | e∗(b)/y, e∗(c)/z][(t ≺ sR ⊠ sL/t)]

)
(refla)

≡ d[a/x][sRL/l′ ⊗ sRR/r′ | (refla)∗(b)/y, (refla)∗(c)/z][(t ≺ sR ⊠ sL/t)]

≡ d[a/x][sRL/l′ ⊗ sRR/r′ | b/y, c/z][(t ≺ sR ⊠ sL/t)]

Proposition 1.6.4 (Colourful Path Induction). The rule

t | Γ, wt :
(

∑(x:A)∑(x′ :A)x = x′
)
⊗

(
∑(y:B)∑(y′ :B)y = y′

)
⊢ D type

t ≺ l⊗ r | Γ, xl : A, yr : B ⊢ d : D[(x, x, reflx) ⊗l r (y, y, refly)/w]

t ≺ Φ | Γ ⊢ s :
(

∑(x:A)∑(x′ :A)x = x′
)
⊗

(
∑(y:B)∑(y′ :B)y = y′

)
t ≺ Φ | Γ ⊢ let (x, x, reflx) ⊗l r (y, y, refly) = s in d : D[s/w]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(let (x, x, reflx) ⊗l r (y, y, refly) = (a, a, refla) ⊗sL sR
(b, b, reflb) in d)

≡ d[sL/l⊗ sR/r | a/x, b/y]

is derivable.
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Proof. We can use two hom types to expose each path in turn. Suppose (via ordinary ⊗-induction)
we have (x, x′, p) : ∑(x:A) ∑(x′ :A) x = x′ and (y, y′, q) : ∑(y:B) ∑(y′ :B) y = y′. We first use (x, x′, p) to
produce a (red) hom with the following type:

⃝∏ ((y2,y′2,q2):∑(y:B) ∑(y′ :B) y=y′)D[(x, x′, p)⊗ (y2, y′2, q2)/w]

We can first apply ordinary Id-induction to assume p ≡ reflx′′ , so that the goal is a hom

⃝∏ ((y2,y′2,q2):∑(y:B) ∑(y′ :B) y=y′)D[(x′′, x′′, reflx′′)⊗ (y2, y′2, q2)/w]

So suppose we now have (y2, y′2, q2) : ∑(y:B) ∑(y′ :B) y = y′, and we have to produce a term of
type D[(x′′, x′′, reflx′′)⊗ (y2, y′2, q2)/w]. We can pull the same trick in the other direction: we use
(y2, y′2, q2) to produce a hom

⃝∏ (x′′2 :A)D[(x′′2 , x′′2 , reflx′′2
)⊗ (y2, y′2, q2)/w]

which we then apply to x′′. For this second hom, apply ordinary Id-induction to assume q2 ≡ refly′′2
(which is allowed because q2 is now of the top colour), so the goal becomes a hom of type

⃝∏ (x′′2 :A)D[(x′′2 , x′′2 , reflx′′2
)⊗ (y′′2 , y′′2 , refly′′2

)/w]

and for this we finally have

(∂x′′2 .d[x′′2 /x, y′′2 /y]) :⃝∏ (x′′2 :A)D[(x′′2 , x′′2 , reflx′′2
)⊗ (y′′2 , y′′2 , refly′′2

)/w]

As a single term, we have constructed

let (x, x′, p)⊗ (y, y′, q) = s in

(let reflx′′ = p in ∂(y2, y′2, q2).(let refly′′2
= q2 in ∂x′′2 .d[x′′2 /x, y′′2 /y])⟨x′′⟩)⟨(y, y′, q)⟩

When s ≡ (a, a, refla)⊗ (b, b, reflb), the induction on s followed by the induction on p both compute,
and we are left with

(∂(y2, y′2, q2).(let refly′′2
= q2 in ∂x′′2 .d[x′′2 /x, y′′2 /y])⟨a⟩)⟨(b, b, reflb)⟩

≡ (let refly′′2
= reflb in ∂x′′2 .d[x′′2 /x, y′′2 /y])⟨a⟩)

≡ (∂x′′2 .d[x′′2 /x, b/y])⟨a⟩)
≡ d[a/x, b/y]

as required.

Remark 1.6.5. The preceding few propositions are the carcass of an attempted proof that all the
induction principles we want are derivable. Unfortunately, the strategy of using⃝∏ to ‘move things
out of the way’ eventually fails. Associativity of ⊗ means that the eliminators for ⊗-types are
always derivable, but once⃝∑ and Σ are combined, we run into an infinite regress.

The above arguments only go through when the ambient context is dull in the motive of the
eliminators. So consider the type (A⊗ B)× (C⊗ (D⊗ E)). We may use Π to move C⊗ (D⊗ E)
into the motive and apply binary ⊗-induction on A⊗ B. But then the derivable eliminator for
C⊗ (D⊗ E) cannot be applied without marking the linear information in A and B.
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1.6.2 Telescopes

We now turn to the general pattern-matching rule. The patterns we add here are the ‘constructor
patterns’ of [LZH08] and are reminiscent of a ‘positive focusing phase’ in which many positive
types are decomposed at once, though unlike focused logics we do not require that a type is
maximally decomposed by a pattern match.

The common feature of the types that can be matched is that they each have judgemental avatars
as context structure, and pattern matching will decompose a composite of these types into their
judgemental versions simultaneously. We do not include patterns for +-types or the 0-type, or any
other (higher) inductive type: this simplifies the rules somewhat as every pattern match will have
exactly one branch.

The first new judgement is for a ‘telescope’, which is the collection of new variables bound by a
pattern:

t ≺ Φ | Γ ⊢ Ψ | ∆ tele

where t ≺ Φ | Γ ctx and Ψ palette. Extending this context with the telescope yields

t ≺ (Φ, Ψ) | Γ, ∆ ctx

where the Ψ palette is placed under the top colour label, rather than adjacent to it. The rules for
forming telescopes, Figure 1.20, are the rules forced by the requirement that this latter context be
well-formed.

Remark 1.6.6. In ordinary MLTT, telescopes in a context coincide with all possible extensions of
that context that one can encounter in a derivation that ends with that context. This is because the
only modifications to the context that appear are extending it with additional variables on the right.

The notion of telescope we use here is more restrictive: we can only extend the palette t ≺ Φ
with a single additional subpalette Ψ, combined with a comma. This does not include the ‘linear’
context extension used in ⊸-types, nor does it include any filtering of the original palette; both of
these ‘context extensions’ could be encountered in a derivation ending in the palette t ≺ Φ.

Palette Substitutions. When a pattern is matched, we will need to do a simultaneous substitution
for all the variables bound in the pattern. A substitution for a telescope will consist of two pieces.
First, we have to decide how the resources of the context are used to produce the resources of the
telescope, in the form of a palette substitution Φ ⊢ κ : Ψ. This is an assignment of once slice of the
domain for each colour of the codomain, in a manner complying with the linearity restrictions of
both palettes.

Palette substitutions are formed by induction on the codomain, the rules are given in Figure 1.21.
Palette substitutions are formed using an auxiliary judgement Φs ⊢ κ : Ψ where Φ ⊢ s slice, the
purpose of which is to make the substitution operation easy to compute by hand. Going up a
derivation, less of the palette remains to be used, and the slice s keeps track of the part that is
accessible.

• There is a unique substitution into 1, as 1 represents the terminal object.
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TELE-EMPTY
t ≺ Φ | Γ ctx Ψ palette

t ≺ Φ | Γ ⊢ Ψ | · tele
TELE-EXT

t ≺ Φ | Γ ⊢ Ψ | Ω tele

t ≺ Ψ ⊢ c colour

(t ≺ Φ, Ψ)c | Γc, Ωc ⊢ A type

t ≺ Φ | Γ ⊢ Ψ | Ω, xc : A tele

TELE-EXT-MARKED

t ≺ Φ | Γ ⊢ Ψ | Ω tele

c | Γ, Ω ⊢ A type

t ≺ Φ | Γ ⊢ Ψ | Ω, xc : A tele

CTX-EXT-TELE
t ≺ Φ | Γ ⊢ Ψ | Ω tele

t ≺ Φ, Ψ | Γ, Ω ctx
−−−−−−−−−−−−

Figure 1.20: Rules for Telescopes

PAL-SUB-EMPTY
Φ ⊢ · : 1

PAL-SUB-×
Φ ⊢ κ1 : Ψ1 Φ ⊢ κ2 : Ψ2

Φ ⊢ κ1, κ2 : Ψ1, Ψ2

PAL-SUB-⊗

Φ ⊢ sL ⊠ sR presplit

ΦsL ⊢ κL : ΨL ΦsR ⊢ κR : ΨR

Φ ⊢ κL ⊗ κR : ΨL ⊗ΨR
PAL-SUB-UNIT

Φ ⊢ U unit

Φ ⊢ (U/j) : ∅j

PAL-SUB-NAME

Φ ⊢ s slice

Φ ⊢ u(s)⊠∅ presplit Φu(s) ⊢ κ : Ψ

Φ ⊢ (s/c ≺ κ) : (c ≺ Ψ)

Figure 1.21: Rules for Palette Substitutions.
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TELE-SUB-EMPTY
t ≺ Φ ⊢ κ : Ψ

t ≺ Φ | Γ ⊢ (κ | ·) : Ψ | ·

TELE-SUB-EXT

t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω
(t ≺ Φ)c[κ] | Γc[κ] ⊢ a : A[κ | θ]

t ≺ Φ | Γ ⊢ (κ | θ, a/xc) : Ψ | Ω, xc : A

TELE-SUB-EXT-MARKED

t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω
c | Γ ⊢ a : A[κ | θ]

t ≺ Φ | Γ ⊢ (κ | θ, a/x) : Ψ | Ω, xc : A

SUBST
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω t ≺ Φ, Ψ | Γ, Ω, Γ′ ⊢ J

t ≺ Φ | Γ, Γ′[κ | θ] ⊢ J [κ | θ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 1.22: Rules for Telescope Substitutions

• A substitution into a ×-bunch is given by substitutions into the components, keeping the
domain palette the same. Allowing the palette Φ unchanged on both sides is what builds in
contraction for the palette ,.

• A substitution into a ⊗-bunch is given by splitting the domain and providing substitutions
from each piece into the two components.

• A substitution into a palette headed by a label is given by an individual slice representing the
whole palette, together with a substitution into the palette under the label.

Here we have used a sneaky trick: the split Φ ⊢ u(s) ⊠∅ presplit ensures that the slice s
chosen represents some subpalette that can be cartesian weakened to the original Φ.

Telescope Substitutions. Given a palette substitution t ≺ Φ ⊢ κ : Ψ, a telescope substitution
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | ∆ is formed by providing for each variable xc : A, a term a : A[κ | θ] that
uses the resources in the preimage of c, i.e. in the slice c[κ] slice. The rules for telescope substitutions
are given in Figure 1.22.

1.6.3 Patterns

A pattern is represented by a judgement t ≺ Φ | Γ ⊢ Ψ | ∆ ⊢ p : A pattern, which presupposes that

t ≺ Φ | Γ ⊢ Ψ | ∆ tele

t ≺ Φ | Γ ⊢ A type

t ≺ Φ, Ψ | Γ, ∆ ⊢ p : A
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We think of the type A as exactly the telescope Ψ | ∆ tele packaged into a type, with p the term that
constructs a term of the type given the telescope.

There is a second judgement that defines when a term matches a pattern: we write this as

t ≺ Φ | Γ ⊢ a ▷◁ p[κ | θ] : A

presupposing that

t ≺ Φ | Γ ⊢ a : A

t ≺ Φ | Γ ⊢ Ψ | ∆ ⊢ p : A pattern

t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | ∆

It follows quickly by induction that whenever we have Φ | Γ ⊢ a ▷◁ p[κ | θ] : A, also a ≡ p[κ | θ].
The rules for patterns and pattern matching are given in Figures 1.23 and 1.24. Considering the

patterns one-at-a-time:

• First, we have the variable pattern, which matches any term.

• A pattern (p1, p2) : ∑(x:A) B matches (a, b) : ∑(x:A) B if a matches p1 and b matches p2. The
telescopes bound by p1 and p2 are combined with a comma.

• The pattern ⋆ : 1 matches ⋆ : 1. (Recall that we include the η-rule for the cartesian unit, so
x ≡ ⋆ for any x : 1.) Doing so binds no new variables.

• The pattern (p, p, reflp) : ∑(x:A) ∑(y:A) x =A y matches the term (a, a, refla) when p matches a.
This binds the same telescope that p does.

• The pattern p♮ : ♮A matches a♮. By the η-rule for ♮, this applies to any term n : ♮A, because
n ≡ n♮

♮. This binds the telescope bound by p with every variable replaced with a zeroed
variable.

• The pattern (pL ⊗cL cR
pR) : ⃝∑ (x:A) B matches (a ⊗sL sR

b) if a matches pL and b matches pR.
This binds the telescopes of pL and pR with their palettes combined with a ⊗, using the two
colour names cL and cR the top colours of each subpalette.

• The pattern ◊i : S matches ◊j for any unit label j. This binds a new judgemental unit ∅i.

• The pattern (pL ⊗t u.≺∅i
◊i) : A⊗ S matches (a ⊗t u.≺∅i

◊i) if a matches pL, where the split
used must be the unitor split. This binds the same telescope as pL.

1.6.4 Matching

To use a pattern, we use the let-binding rule as shown in Figure 1.25.
A uniqueness principle holds for any pattern, along the same lines of Proposition 1.3.6 for ⊗.

For the third and hopefully final time:

Meta-Proposition 1.6.7 (Uniqueness principle for patterns). Fixing any pattern

Ψ | ∆ ⊢ p : A pattern,

suppose C : A→ U is a type family and f : ∏(a:A) C(a). Then for any a : A we have

(let p = a in f (p)) = f (a)
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t ≺ Φ | Γ ⊢ A type

t ≺ Φ | Γ ⊢ 1 | xt : A ⊢ x : A pattern

t ≺ Φ | Γ ⊢ Ψ1 | Ω1 ⊢ p1 : A pattern

t ≺ Φ | Γ, xt : A ⊢ B type

t ≺ Φ, Ψ1 | Γ, Ω1 ⊢ Ψ2 | Ω2 ⊢ p2 : B[p1/x] pattern

t ≺ Φ | Γ ⊢ Ψ1, Ψ2 | Ω1, Ω2 ⊢ (p1, p2) : ∑(x:A) B pattern t ≺ Φ | Γ ⊢ 1 | · ⊢ ⋆ : 1 pattern

t ≺ Φ | Γ ⊢ Ψ | Ω ⊢ p : A pattern

t ≺ Φ | Γ ⊢ Ψ | Ω ⊢ (p, p, reflp) : ∑(x:A) ∑(y:A) x =A y pattern

t ≺ Φ | Γ ⊢ Ψ | Ω ⊢ p : A pattern

t ≺ Φ | Γ ⊢ 1 | Ω ⊢ p♮ : ♮A pattern

cL | Γ ⊢ ΨL | ΩL ⊢ pL : AcL↔t pattern

cR | Γ, ΩL ⊢ ΨR | ΩR ⊢ pR : B[pL/x]cR↔t pattern

t ≺ Φ | Γ ⊢ (cL ≺ ΨL)⊗ (cR ≺ ΨR) | ΩL, ΩR ⊢ (pL ⊗cL cR
pR) :⃝∑ (x:A) B pattern

t ≺ Φ | Γ ⊢ ∅i | · ⊢ ◊i : S pattern

t | Γ ⊢ ΨL | ΩL ⊢ pL : A pattern

t ≺ Φ | Γ ⊢ ΨL | ΩL ⊢ (pL ⊗t u.≺∅i
◊i) :⃝∑ (x:A) S pattern

t | Γ, x : S ⊢ B type

t | Γ ⊢ ΨR | ΩR ⊢ pR : B[◊/x] pattern

t ≺ Φ | Γ ⊢ ΨR | ΩR ⊢ (◊i ⊗u.≺∅i t pR) :⃝∑ (x:S) B pattern

Figure 1.23: Rules for Patterns
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t ≺ Φ | Γ ⊢ a ▷◁ x[· | a/x] : A

t ≺ Φ | Γ ⊢ a ▷◁ p1[κ1 | δ1] : A
t ≺ Φ | Γ ⊢ b ▷◁ p2[κ2 | δ2] : B[a/x]

t ≺ Φ | Γ ⊢ (a, b) ▷◁ (p1, p2)[κ1, κ2 | δ1, δ2] : ∑(x:A) B t ≺ Φ | Γ ⊢ ⋆ ▷◁ ⋆[· | ·] : 1

t ≺ Φ | Γ ⊢ a ▷◁ p[κ | δ] : A

t ≺ Φ | Γ ⊢ (a, a, refla) ▷◁ (p, p, reflp)[κ | δ] : A

t | Γ ⊢ n ▷◁ p[κ | δ] : A

t ≺ Φ | Γ ⊢ n♮ ▷◁ p♮[κ | δ] : ♮A pattern

t ≺ Φ ⊢ sL ⊠ sR split

ΦsL | ΓsL ⊢ a ▷◁ pL[κL | δL] : A
ΦsR | ΓsR ⊢ b ▷◁ pR[κR | δR] : B[a/x]

t ≺ Φ | Γ ⊢ (a ⊗sL sR
b) ▷◁ (pL ⊗cL cR

pR)[(sL/cL ≺ κL)⊗ (sR/cR ≺ κR) | δL, δR] :⃝∑ (x:A) B

t ≺ Φ | Γ ⊢ ◊j ▷◁ ◊i[j/i | ·]

t ≺ Φ | Γ ⊢ a ▷◁ pL[κL | δL] : A

t ≺ Φ | Γ ⊢ (a ⊗t u.≺∅i
◊i) ▷◁ (pL ⊗t u.≺∅i

◊i)[κL | δL] : A⊗ S

t ≺ Φ | Γ ⊢ b ▷◁ (pR[◊/x])[κR | δR] : B[◊/x]

t ≺ Φ | Γ ⊢ (◊i ⊗u.≺∅i t b) ▷◁ (◊i ⊗u.≺∅i t pR)[κL | δL] :⃝∑ (x:S) B

Figure 1.24: Rules for Pattern Matching
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MATCH

t ≺ Φ | Γ ⊢ Ψ | Ω ⊢ p : A pattern

t ≺ Φ | Γ, zt : A ⊢ C type

t ≺ Φ, Ψ | Γ, Ω ⊢ c : C[p/z]
t ≺ Φ | Γ ⊢ a : A

t ≺ Φ | Γ ⊢ let p = a in c : C[a/z]

MATCH-BETA

t ≺ Φ | Γ, zt : A ⊢ C type

t ≺ Φ, Ψ | Γ, Ω ⊢ c : C[p/z]
t ≺ Φ | Γ ⊢ Ψ | Ω ⊢ a ▷◁ p[κ | θ] : A pattern

t ≺ Φ | Γ ⊢ (let p = a in c) ≡ c[κ | θ] : C[a/z]

Figure 1.25: Rules for Match

1.6.5 Discussion

Remark 1.6.8. Because 1, Σ-types and ♮-types have definitional η-rules, the 1, Σ- and ♮-patterns on
their own can never be ‘stuck’: η-expanding the target of the pattern match will expose a term that
matches the pattern. (This somewhat justifies the Σ-type pattern-matching syntax used in ordinary
HoTT.) Patterns matches containing these types can still be ‘stuck’ if they are used within a larger
pattern that contains ⊗ or Id elsewhere, however.

Remark 1.6.9. There is the question of adding patterns for +-types, pushouts, and other higher
inductive types. Combining pattern-matching for + with pattern-matching for ⊗ would force ⊗ to
preserve coproducts, a property that might not hold in every model (absent the hom right-adjoint).

Remark 1.6.10. Rather than adding pattern matching, one’s first instinct might be to let the variable
zt : A⊗ B used as the target in⊗-ELIM have an arbitrary colour, not necessarily the top colour of the
palette. In the αλ-calculus [OHe03], the ⊗-ELIM rule works in this way: the variable eliminated by
⊗-ELIM may be placed anywhere in the context. This is reminiscent of ‘deep inference’ [Gug07], a
proof system which allows rewriting of formulas anywhere in a structured context. Horsfall [Hor06]
formulates the logic of bunched implication in a system with deep inference.

In our type theory, an eliminator of this kind fails because the resulting rule would not be closed
under substitution. If zl where l is bound in a different, outer use of ⊗-ELIM, then a substitution
for l might replace l with a general slice of the palette. Our theory (intentionally) has no context
extension with shape zs : A for s a slice.

Instead, we could make ⊗-ELIM a ‘Frobenius’-eliminator. Rather than extending the context
with zt : A⊗ B, we extend the context with an arbitrary telescope Ψ | ∆ that contains zp : A⊗ B
so that p in an arbitrary place in Ψ. The corresponding eliminator would look something like the
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following:

⊗-ELIM-FROB?
t ≺ Φ | Γ ⊢ Ψ{p ≺ Ψ′} | ∆, zp :⃝∑ (x:A) B, ∆′ tele

t ≺ Φ, Ψ | Γ, ∆, zp :⃝∑ (x:A) B, ∆′ ⊢ C type

t ≺ Φ, Ψ{p ≺ Ψ′, r⊗ b} | Γ, ∆, xr : A, yb : B, ∆′[x ⊗r b y/z] ⊢ c : C[x ⊗r b y/z]
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | ∆, zp :⃝∑ (x:A) B, ∆′

t ≺ Φ | Γ ⊢ let Ψ{p ≺ Ψ′, r⊗ b} | ∆, xr : A, yb : B, ∆′[x ⊗r b y/z] = (κ | θ) in c : C[κ | θ]

(let Ψ{p ≺ Ψ′, r⊗ b} | ∆, xr : A, yb : B, ∆′[x ⊗r b y/z] = (κ | θ, a ⊗sL sR
b/z, θ′) in c)

≡ c[κ{sL/r⊗ sR/b} | θ, a/x, b/y, θ′] : C[κ | θ, a⊗ b/z, θ′]

An eliminator for + in this style in the context of a bunched type theory is discussed in [Sch06,
§4.3]. In ordinary dependent type theory without Π-types, the ordinary two-sided eliminator for
Id-types is strictly weaker than a Frobenius eliminator for Id-types [GG08, Remark 3], and the one-
sided eliminator is sufficient to derive a Frobenius Id-eliminator [Lum18; BK19]. In MTT [GKNB20],
a Frobenius eliminator for Id-types locked behind a modality is not derivable and must be added as
a base rule [Gra21].

The practical issue with the Frobenius rule for ⊗-types given above is the proliferation of
new judgements and operations needed to make sense of it. These rules involve telescopes-of-
telescopes (∆′), a special substitution into these telescopes-of-telescopes (∆′[x⊗ y/z] and C[x⊗
y/z]), identifying the middle of a telescope substitution (κ | θ, a ⊗sL sR

b/z, θ′) and rewriting the
middle of a telescope substitution to divide the ⊗-INTRO into its components: (κ{sL/r⊗ sR/b} |
θ, a/x, b/y, θ′).

Pattern matching is much simpler, and is equivalent in power to the above Frobenius rule. It
is also more economical: if we wish to perform induction on a deeply nested ⊗-type, the above
eliminator forces us to eliminate each instance of ⊗ individually, possibly duplicating large sections
of the context as part of the telescope ∆ each time. With pattern matching we eliminate all of the
⊗-types at once, only extending the context once.

1.7 Related Work

We survey other work that tackles similar issues to the present type theory.

1.7.1 Modal Type Theories

The natural modality follows the work on constructive modal logics such constructive S4, intu-
itionistic linear logic, and adjoint logic — especially presentations with two contexts or different
judgements for modal assumptions — and their generalisations with dependent types [Bar96;
BW96; PD01; AMPR01; NPP08; Ree09; PR16]. The most directly related calculi are spatial type
theory [Shu18] and the calculi for right adjoint functors/comonads [Clo18; BCMEPS20; GSB19].
While these previous works inform our design in Section 1.1, none consider a bireflective modality
as we do here, and there were still some interesting design questions specific to our setting. For
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example, because ♮ is both a monad and a comonad, the previous work suggests two possible
designs: [PD01; Shu18] have special context structure corresponding to a comonad, and the counit
is a “silent” operation (not marked in the proof term), while [GSB19] has special context structure
for a monad, and the unit is a silent operation. In our setting, we have both a monad and a comonad,
but the “roundtrip” of the unit followed by the counit is not the identity, so we cannot make both
the unit and counit silent. After some experimentation, we chose to make the unit silent and the
counit explicit via “marked” variables.

The presence of both the unit and counit mean that there is no separation of the context into two
zones: the MARKWK rule can weaken any term to one where marked and unmarked assumptions
are interleaved. This is not so important for the ♮-fragment of the theory, because the rules for
♮-types mark the entire context. It becomes crucial once ⊗-types are included, because filtering the
context to an arbitrary slice could mark variables anywhere in the context.

Some additional related work develops frameworks for modal type theories in general [LSR17;
LRS22; GKNB20], but our setting is not quite an instance of these frameworks. The first [LSR17]
lacks dependent types, but can describe the simply-typed fragment of our type theory. The in-
progress extension of this work to dependent types [LRS22] should be able to capture the same
semantic situation as that captured by our theory. The mode theories of the second [GKNB20], do
not allow making the left adjoint types (“locks”) into CwF morphisms, which corresponds in our
setting to defining the natural operation on contexts as a context of individually marked variables
rather than an operation that applies at once to the entire context.

Additionally, our contribution in Section 1.1 is an “optimised” syntax where structural rules
are combined with other rules, and as much is admissible as possible, and the step from these
frameworks to an optimised syntax is currently one that must be undertaken for each type theory
separately in any case.

1.7.2 Bunched Type Theories

The existing work most comparable to our ⃝∑ and ⃝∏ types is Schöpp and Stark’s Bunched
Dependent Type Theory [Sch06; SS04]. Their work is motivated by similar semantic considerations
to ours: their goal is to find a type theory that has a natural interpretation in the ‘Schanuel
topos’ [GP01], which has a useful monoidal structure. Beginning with ordinary dependent type
theory, they add a context formation rule

Γ ctx ∆ ctx

Γ⊗ ∆ ctx

i.e., there is no dependency across bunches. The corresponding monoidal pair type therefore
requires the input types to be closed. The other critical difference to our theory is that the monoidal
product is affine, meaning that the monoidal unit is the terminal object. This is certainly not the
case in our models of interest. Affineness manifests syntactically as a permissive variable rule:
every variable in scope is usable, regardless of where in the context it lies.

Cheney’s λΠ N[Che09; Che12] is a subsystem of the previous type theory, where rather than
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adding binary bunches of contexts, there is a special context extension that creates a linear bunch:

Γ ctx α name

Γ#a:α ctx

which should be thought of as the bunch Γ⊗ α. Here name is a special syntactic class, we are not
permitted to form a bunch with an arbitrary type. Like Schöpp and Stark, the theory is inherently
affine: the variable rule permits the use of any variable from the context, regardless of whether that
variable is to the left of one of these special context extensions. Working with a simpler system
allows Cheney to show decidability of typechecking and strong normalisation. Pitts, Matthiesen
and Derikx’s FreshMLTT [PMD15] similarly uses a special context extension for names that is
treated affinely.

In his book on bunched implication, Pym [Pym02, §15.15] briefly speculates on what a depen-
dent bunched theory might look like. The following formation rule for bunches is suggested:

Γ ⊢ ∆ bunch

⊢ Γ⊗ ∆ bunch

which appears to build in a kind of affineness: variables on the left are permitted to be used on
the right. A curious idea is considered: to allow variables of the same name and type to appear
multiple times in the context6. For example, if we have h :⃝∏ (x:A) B(x) ⊸ C(x) ⊸ D, the theory
allows a term

(x : A)⊗ (y : B(x))⊗ (x : A)⊗ (z : C(x)) ⊢ h⟨x⟩⟨y⟩⟨z⟩ : D

It is not entirely clear how this might be interpreted categorically. In our system we sidestep this
issue by requiring the argument type of a hom to be dull.

There have been some extensions of the simple αλ-calculus. Collinson, Pym and Robin-
son [CPR08] add polymorphism, where both the context of type variables and context of or-
dinary variables are both bunched. Atkey [Atk04; Atk06] allows a more refined notion of sepa-
ration between variables: rather than only having a binary tensor that separates two variables,
an arbitrary symmetric relation describing ‘separatedness’ is allowed. An unpublished note by
Zeilberger [Zei05] uses a second context zone to extend propositional BI with a modal operator
corresponding to the □ modality of S4. Such a modality is a comonad presented in a positive style,
making it more like the ♭ modality than ♮. These systems do not discuss dependent types.

A blog post by Krishnaswami [Kri11] tackles the issue of weakening and contraction not being
admissible in the (simple) αλ-calculus. Each shift between linear and non-linear bunches in the
context is annotated with a label, and there is special term syntax that adds and removes these
labels from the context. This is similar to our colour labels, but ⊗ bunches are also given a label,
not only × bunches. This makes some forms of weakening admissible: any × bunch can silently
have additional sub-bunches added.

But this does not capture all weakenings that are possible in the original αλ-calculus, specifically
those that create new × bunches. Recall that in the αλ-calculus, × of contexts is represented by

6Pym even states that “the two occurrences of x may be seen as different ‘colourings’ of x”!
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a semicolon and ⊗ by a comma. The weakening rule allows us to go from any judgement in
context ∆1, ∆2, ∆3 to one in context ((∆1, ∆2); Γ), ∆3, corresponding to substitution by the projection
((∆1 ⊗ ∆2)× Γ)⊗ ∆3 → ∆1 ⊗ ∆2 ⊗ ∆3.

Now consider weakening a hom application in the following way:

WK

⊸-ELIM
∆1 ⊢ f : A ⊸ B ∆2, ∆3 ⊢ a : A

∆1, ∆2, ∆3 ⊢ f a : B

((∆1, ∆2); Γ), ∆3 ⊢ f a : B

In the rules of the blog post, the final context is denoted r[s[∆1, ∆2]; Γ], ∆3 with the labels marking
the shift between the two kinds of bunches (the names r and s chosen arbitrarily). There is no
way to push this weakening into the premises of the ⊸-ELIM because of the way Γ binds ∆1 and
∆2 together, and the ⊸-ELIM rule does not build any weakening into its conclusion. This is not
easily fixed: ⊸-ELIM would need to build in a way to reassociate the context, bind new labels, and
weaken, which is exactly what the palette notation in our theory allows us to do.

1.7.3 Indexed Type Theories

Schreiber has hypothesised [Sch14, §3], [Sch17, §5.5], [nLabb] a kind of linear dependent type
theory suitable for doing synthetic stable homotopy theory. The natural semantics for such a type
theory would be in indexed monoidal (∞-)categories, so a category C with appropriate structure
(typically a topos), and a functor L : Cop → SymMonCat equipped with base-change operations.
We will see that this kind of structure can be recovered internally to our type theory in Section 2.4.

A formal syntax for working in such an indexed setting directly is Vákár’s Intuitionistic Linear
Dependent Type Theory (ILDTT) [Vák14; Vák15]. The judgements for types and terms have the
shape

Γ ⊢ A type Γ; ∆ ⊢ a : A

Contexts have an ‘intuitionistic zone’ Γ and a ‘linear zone’ ∆, both ordinary lists of variables with
types. The Γ zone corresponds to an object of C, and the ∆ zone to an object of the fibre L(Γ).
Assumptions in Γ may depend on previous assumptions in Γ, but ∆ has no internal dependency.
Types are formed only with reference to the intuitionistic zone, terms may reference the linear zone:
a term Γ; ∆ ⊢ a : A corresponds to a map a : ∆→ A in the category L(Γ).

The non-dependent ⊗- and ⊸-types, together with other linear logic type formers such as
&-types, are then defined with a fixed intuitionistic zone. These all correspond to the fibrewise
structure available in each symmetric monoidal category L(Γ).

All types in this system are ‘linear’, and extending the Γ context with another assumption x : A
means using a comprehension operation ([Vák14, Definition 1]) to construct an object Γ.A ∈ C/Γ
from A ∈ L(Γ). In a hypothetical model of ILDTT in parameterised spectra, this operation takes a
parameterised spectrum to the space with Ω∞ applied fibrewise 7. This means that the only ‘spaces’
that can be manipulated in ILDTT are those of the form Ω∞ A for A : Spec, which is an extremely
special class of spaces. ILDTT has a couple of other disadvantages: the dependent type-formers Σ!

7We can define this operation internally to our type theory; see Definition 2.2.30
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and Π! only allow their domain types to be used ‘nonlinearly’, i.e., via a trip through Ω∞, and it
seems unlikely that there is a notion of universe for this system.

Recent work of Isaev on Indexed Type Theory [Isa21] also divides the context into two pieces,
but importantly divides types into two different sorts: ordinary types Γ ⊢ A type and indexed
types Γ | ∆ ⊢ B ixtype. The fragment of the theory that does not concern the indexed context ∆ is
ordinary dependent type theory, avoiding the Ω∞ issue of the previous theory. He suggests in a
recent talk [Isa20] that one could add stability axioms and possibly type formers ⊗ and ⊸ to the
indexed portion of the type theory to allow working with spectra over the base space described by
Γ.

The downside of this approach is that, because base types and indexed types live in different
sorts, one needs to replicate a lot of constructions in both the base theory and the indexed theory
and assert axioms relating the two. For example, one needs a specialised ‘indexed’ version of the
suspension and loop-space operations, whereas in our theory the ordinary operations apply even
to types with linear information. Our theory also allows a ‘type of all spectra’: spectra are simply
the ♮-null types, and so we can quantify over spectra using ordinary Σ and Π-types.

A third line of work with this sort of judgemental structure is the LNLD theory of Krishnaswami,
Pradic and Benton [KPB15]. The nonlinear and linear types again live in different sorts, with adjoint
operators that transport between the two. Linear types can only depend on nonlinear types, so
there is no ‘genuine linear Σ-type’, only a kind of pair type where the domain is a nonlinear type.
As in ILDTT and ITT above, the linear operations all happen ‘in a fibre’, keeping the nonlinear
context fixed.

LNLD includes a number of equations, such as equality reflection, that make typechecking
undecidable and a homotopical interpretation unavailable. These points are not the focus of their
work however, and their dependent type theory is used to give a proof-theoretic analysis of an
imperative programming language; such applications are far outside the scope of our work.

1.7.4 Quantitative Type Theories

Quantitative Type Theory, introduced by McBride [McB16] and extended by Atkey [Atk18], is
closer to our theory: there is only one notion of type, with the linearity restrictions tracked by
annotations on each variable in the context. These annotations are drawn from a fixed semiring,
and control when a variable may be used. There are many non-dependent type theories where
variables are annotated similarly [GSS92; POM14; BGMZ14; Abe15; AB20; AW18; WA20; OLE19],
with the annotations controlled by some kind of ring-like algebraic structure.

The semiring used most often with QTT is the ‘none-one-tons’ semiring {0, 1, ω}. A 0-use
variable may not be used in a term, but can still be used to form types. These roughly correspond to
our marked variables: those variables whose ‘linear’ content has been expended, but which is still
available to be used in a ‘nonlinear’ way. In QTT this is often thought of as meaning the variable is
not used ‘at run-time’, or is used ‘non-computationally’. A context consisting all of 1-use variables
would correspond in our theory to a context where each variable was in its own ⊗-bunch, and a
context consisting of all ω-use variables would be one where each variable is labelled with the top
colour.

A key difference to our theory is that all dependency in QTT occurs through 0-use variables:
every type formation rule requires an entirely zeroed context. In our theory, we can certainly use
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non-marked variables to form types.
The bunched context structure that we use lets us describe variable use in a more refined way

than QTT. For example, our context

r⊗ b | xr : A, yr : B, zb : C

specifies that the red and blue pieces must be used linearly, but once we have access to the red part
of the context, say, each of x and y can be used arbitrarily many times. This has no analogue in QTT:
x and y would either be 1-use or ω-use, and neither option captures the correct relationship with z.

An advantage of QTT is that it unifies Σ-types with the⊗-types and Π-types with the hom-types,
recording the difference between each pair with different usage annotations in the type formers.
QTT is also parameterised over the choice of usage semiring, with each choice of semiring giving a
different notion of substructurality.

There are many other linear dependent type theories that share the property with QTT that
variables are marked as either linear or nonlinear, and types may only depend on nonlinear
variables. Among them, [CP96; WCPW03; IP98; IP99], and [Pym02, §15.3].

The Graded Modal Dependent Type Theory (GRTT) of Moon, Eades and Orchard [MEO21] is a
significant generalisation of QTT which allows types to depend on variables in the same way that
terms do. Each assumption in the context has an associated vector of usage values describing how
it uses all the prior variables, and the variable rule ensures that these usages are coherent over the
context. This added flexibility does not seem to capture bunched structures.

Proto-Quipper-M of Fu, Kishida and Selinger [FKS20; FKRS20] extends QTT in a different
direction, instead carving out a subset of terms and types that behave nonlinearly: their ‘parameter’
terms and types. There is a ‘shape’ transformation on syntax that takes any type A to a parameter
type Sh(A). This Sh operation is like our ♮ modality, but as a transformation on syntax it builds in
the various equivalences that commute ♮ with the other type formers (Proposition 1.1.18, Proposi-
tion 1.1.11, Axiom C). Linear types may depend non-trivially on the shape of other linear types, and
this makes the dependency structure of their ⊗ like ours: in a ⊗ type, the right type may depend
on the nonlinear resources of the left.
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Chapter 2

Mathematics

Many of the results of Section 2.1, Section 2.2 and Section 2.3 concerning the ♮ modality
previously appeared in joint work with Dan Licata and Eric Finster [RFL21]. Axiom N arose
out of conversations with Mike Shulman.

Our type theory is put to work: we prove some basic results in stable homotopy theory
synthetically.

• In Section 2.1 we study the ‘spectra’; the types such that ♮A ≃ 1. We will see that they are
pointed and that ordinary functions between them are automatically also pointed functions,
avoiding the need to carry around proofs of pointedness.

• In Section 2.2 we describe a stability axiom that forces the internal category of synthetic
spectra to be stable, in particular making Σ ⊣ Ω an adjoint equivalence for these synthetic
spectra.

The stability axiom also has effects on the other type formers. Like any type in the theory,
the universe U corresponds to a space-valued family of spectra. In Section 2.2.1 we use the
stability axiom to determine what this family of spectra actually is.

• In Section 2.3 we suggest a second axiom, which connects synthetic spectra to ‘analytic’
spectra, defined concretely as sequences of pointed types with connecting maps. This uses
some recent work on sequential colimits [SDR20] in type theory.

• In Section 2.4 we show that for any space X there is an internal category of parameterised
spectra over X, and for any internal map of spaces X → Y, there is an induced “six functor
formalism” between these internal categories.

2.1 Spectra

Informally, the ♮-modal types A ≃ ♮A are those with no synthetic spectral information—we think
of ♮A as forgetting the spectra and replacing them with the trivial one, so if A is equivalent to ♮A,
then A had no spectral information to begin with. Dually, we can consider types with only synthetic
spectral information, which can be defined by demanding that its underlying space is contractible.
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In our intended model, such a type corresponds to an individual spectrum indexed by the point —
finding the spectra among the parameterised families of spectra as those families where the index
space is trivial.

Definition 2.1.1. A type E is a spectrum if ♮E is contractible. We have

Spec :≡ ∑(E:U )isContr(♮E)

for the type of spectra.

This is an instance of a general definition: for any monadic modality⃝, a⃝-connected type A
is one such that⃝A is contractible [RSS20], so a spectrum is a ♮-connected type.

Remark 2.1.2. The type theory thus far admits more models than the intended model in parame-
terised spectra, so we should more properly refer to ♮-connected types by some other name, for
example “reduced” types, by analogy with the reduced excisive functors of Goodwille calculus.

Remark 2.1.3. With spectra in mind, we can clarify why the syntactic property of a type E being
dull is not the same as it being modal. Thinking of our intended model, the only spectrum that is
also a space is the point. However, we can have a non-trivial spectrum that is dull, which describes
the relationship of E to the context—a dull spectrum is one that only varies over the underlying
space of the context.

These ♮-connected types are not difficult to come by:

Definition 2.1.4. If A is any type and x : ♮A is a dull point of its base, the spectrum over x is the type

Ax :≡ ∑(y:A)(x = y♮)

When A is dull, there is a canonical point of Ax given by (x♮, reflx) : ∑(y:A)(x = y♮).

Proposition 2.1.5. Ax is a spectrum.

Proof. We calculate:

♮
(

∑(y:A)(x = y♮)
)
≃ ∑(u:♮A)♮(x = u♮

♮) (Proposition 1.1.18)

≃ ∑(u:♮A)(x = u♮
♮) (=♮A is modal by Proposition 1.1.17)

≡ ∑(u:♮A)(x = u)

which is contractible.

This lets us internalise the idea that every type is a ‘space-valued family of spectra’:

Corollary 2.1.6. For any type A,
A ≃ ∑(x:♮A)Ax

Proof. Expanding Ax on the right, and using the fact that x = x:

∑(x:♮A)∑(y:A)(x = y♮) ≃ ∑(x:♮A)∑(y:A)(x = y♮)

Interchanging Σ-types we obtain a contractible pair.
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Recall the following standard definitions:

Definition 2.1.7. A pointed type is a pair (A, a) of a type A and a term a : A. A pointed map from
(A, a) to (B, b) is a function f : A → B and a path p : f (a) = b. Write U⋆ for the type of pointed
types and

A→⋆ B :≡ ∑( f :A→B) f (a) = b

for the type of pointed maps.

Note that a type or map being pointed is structure, not a property. However, it is common to
abuse notation and write A→⋆ B rather than (A, a)→⋆ (B, b) when the points of A and B can be
inferred from context.

Definition 2.1.8. Any dull spectrum E has a canonical point ⋆E : E given by the composite
1→ ♮E→ E, where the first map is part of the data of ♮E being contractible, and the second is εE.

Proposition 2.1.9. Any dull map f : E→ F between dull spectra is a pointed map in a canonical way.

Proof. In the diagram

1

♮E ♮F

E F

♮ f

f

the top triangle commutes by contractibility of ♮F, and the bottom square commutes by naturality
of the counit, so we have a path equipping f with the structure of a pointed map.

We can’t show that this pointing of f : E→ F is unique, but we can show that the underlying
space of ‘ f is pointed’ is contractible, i.e. ‘ f is pointed’ is itself a spectrum. Hence:

Proposition 2.1.10. If E and F are dull spectra then ♮(E→ F) ≃ ♮(E→⋆ F).

Proof. We verify

♮(E→⋆ F) ≡ ♮
(

∑( f :E→F) f (⋆E) = ⋆F

)
≃ ∑( f :♮(E→F))♮( f

♮
(⋆E) = ⋆F) (Proposition 1.1.18)

≃ ∑( f :♮(E→F)) f
♮
(⋆E)

♮ =♮F ⋆F
♮ (Proposition 1.1.19)

≃ ♮(E→ F) (♮F is contractible)
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Remark 2.1.11. In the pointed spaces model of Section 3.3, these internal spectra interpreted as
“synthetic pointed types”. In the notation of that section, a ♮-connected type A has BA contractible,
so EA is just a single type, and its section pA is just an element of EA. Moreover, any function
f : A → B between such types is a “synthetic pointed map”—inside the type theory, we do not
need to carry around the data saying that f preserves the point, but in the pointed spaces model it
will be interpreted as a function that preserves the sections of A and B, i.e. the points.

Spectra are closed under many operations:

Proposition 2.1.12. Spectra are closed under Σ-types, ⊗-types, identity types, pullbacks, pushouts, suspen-
sions and loop spaces.

Proof. Closure under Σ, identity types and pullbacks holds for any lex modality [RSS20, Theorem
3.1]. Closure under ⊗ follows from Proposition 1.3.21. Closure under pushouts follows from
Proposition 1.1.29. Suspensions and loop spaces (defined via identity types) are special cases of
pullbacks and pushouts.

Proposition {C} 2.1.13. Spectra are closed under ⊸-types.

Proof. This is immediate from Axiom C: we have ♮(E ⊸ F) ≃ (♮E→ ♮F) ≃ (1→ 1) ≃ 1.

For each of the type formers of our theory, we can investigate what the spectrum over each
point in the base is.

Proposition 2.1.14. For any types A and B and any fixed x : ♮A and y : ♮B,

(A× B)(x♮,y♮)
♮ ≃ Ax ⊗ By.

More dependently, given A : U and B : A→ U , for fixed x : ♮A and y : ♮B(x) we have(
∑(x:A)B(x)

)
(x♮,y♮)

♮
≃ Ax ⊗ B(x)y.

In the interest of reducing clutter, we will simply write (A× B)(x,y) etc., implicitly using the
equivalence ♮(A× B) ≃ (♮A× ♮B) of Lemma 1.1.17.

Proof. We write each type as the ‘sum of its fibres’ as in Corollary 2.1.6:

A× B ≃
(

∑(x:♮A)Ax

)
×

(
∑(y:♮B)By

)
≃ ∑(x:♮A)∑(y:♮B)

(
Ax × By

)
It is clear that this map composed with the projection onto the first two factors is equal to the
canonical map A × B → ♮A × ♮B, and so the fibre of this map over (x, y) is observed to be
Ax × By.

We expect our ⊗-type to behave like an external tensor product and to be calculated ‘pointwise’,
and indeed it is:
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Proposition 2.1.15. For any dull types A and B and any fixed x : ♮A and y : ♮B,

(A⊗ B)(x,y) ≃ Ax ⊗ By,

and so
A⊗ B ≃ ∑((x,y):♮A×♮B)Ax ⊗ By.

More dependently, given A : U and B : A→ U , for fixed x : ♮A and y : ♮B(x) we have(
⃝∑ (x:A)B(x)

)
(x,y)
≃ Ax ⊗ B(x)y

Proof. This is very similar, but we use Proposition 1.3.12 to pull the spaces out of the ⊗-type:

A⊗ B ≃
(

∑(x:♮A)Ax

)
⊗

(
∑(y:♮B)By

)
≃ ∑(x:♮A)∑(y:♮B)

(
Ax ⊗ By

)
Again, the projection onto the first two factors is equal to the canonical map A⊗ B→ ♮A× ♮B, and
so the fibre is Ax ⊗ By as we hoped.

The situation for function types is not as simple; we do not know of a general characterisation
of the spectra over some point f : ♮(A→ B). We can however say the following:

Proposition 2.1.16. For any A, B : U , there is an equivalence

A→ B ≃ ∑( f :♮A→♮B)∏(x:♮A)Ax → B f (x)

Proof. It is enough to calculate the fibre of the map (A → B) → (♮A → ♮B) over some function
f : ♮A→ ♮B.

∑(g:A→B) f = (λn.(g(n♮))
♮)

≃ ∑(g:A→B)∏(n:♮A) f (n) = (g⟨n♮⟩)♮ (Function Extensionality)

≃ ∑(g:A→B)∏(a:A) f (a♮) = (g(a))♮ (Theorem 1.1.15)

≡ ∏(a:A)∑(b:B) f (a♮) = b♮ (Univ. Property of Σ)

≃ ∏(a:A)B f (a♮) (Definition 2.1.4)

≃ ∏((x,a):∑(x:♮A) Ax)B f (x) (Corollary 2.1.6)

≃ ∏(x:♮A)Ax → B f (x) (Currying)

This is not enough to calculate the spectrum over a function f : ♮(A→ B), because in general
Ax → B f (x) is not a spectrum, even though the domain and codomain are themselves spectra.

We can give a similar description of the hom type:
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Proposition 2.1.17. For any A, B : U , there is an equivalence

A ⊸ B ≃ ∑( f :♮A→♮B)∏(x:♮A)Ax ⊸ B f (x)

Proof. It is enough to calculate the fibre of the map (A ⊸ B) → (♮A → ♮B) over some function
f : ♮A→ ♮B.

∑(g:A⊸B) f = (λn.(g⟨n♮⟩)♮)

≃ ∑(g:A⊸B)∏(n:♮A) f (n) = (g⟨n♮⟩)♮ (Function Extensionality)

≃ ∑(g:A⊸B)∏(a:A) f (a♮) = (g⟨a⟩)♮ (Theorem 1.1.15)

≃ ∑(g:A⊸B)⃝∏ (a:A) f (a♮) = (g⟨a⟩)♮ (Proposition 1.5.16)

≡ ⃝∏ (a:A)∑(b:B) f (a♮) = b♮ (Proposition 1.5.19)

≃ ⃝∏ (a:A)B f (a♮) (Definition 2.1.4)

≃ ⃝∏ ((x,a):∑(x:♮A) Ax)
B f (x) (Corollary 2.1.6)

≃ ∏(x:♮A)Ax ⊸ B f (x) (Proposition 1.5.17)

Again, in general this does not let us calculate the spectrum (A ⊸ B)h because Ax ⊸ B f (x) is
not necessarily itself a spectrum. But Axiom C forces this to be so:

Proposition {C} 2.1.18. For any A, B : U and h : ♮(A ⊸ B), there is an equivalence

(A ⊸ B)h ≃ ∏(x:♮A)Ax ⊸ Bh♮⟨x⟩

Proof. Follows by composing the above equivalence with Axiom C, and observing that the resulting
map (A ⊸ B)→ ♮(A ⊸ B) is the canonical one.

2.1.1 The Modality and Pointed Types

We need to record some interactions of ♮ with pointed types and pointed functions.

Lemma 2.1.19. If B is a space then then A→⋆ B is a space.

Proof. By Lemma 1.1.17, spaces are closed under Σ, = and Π where the codomain is a space.

Proposition 2.1.20. For any pointed type (A, a), there are canonical points a : A and a♮ : ♮A for which the
unit ηA : A→ ♮A and counit εA : ♮A→ A are pointed maps.

Proof. Both are immediate from the definitions:

(λx.x♮)(a) ≡ a♮

(λn.n♮)(a♮) ≡ a♮♮ ≡ a
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The following is a standard characterisation of equivalence between Σ-types:

Lemma 2.1.21. Suppose we have type families P : A → U and Q : B → U . If we have an equivalence
f : A ≃ B and a family of equivalences gx : P(x) ≃ Q( f (x)) then the map

(λ(x, p).( f (x), gx(p))) : ∑(x:A)P(x)→ ∑(y:B)Q(y)

is an equivalence.

Proof. We have Σ : (ΣA : U .A→ U )→ U , and the given data is equivalent to (A, P) =(ΣA:U .A→U )
(B, Q) by univalence and the definitions of paths in Σ and Π types.

Proposition 2.1.22. Let (A, a) and (B, b) be pointed types with B a space. Precomposition with A→⋆ ♮A
induces an equivalence

(♮A→⋆ B) ≃ (A→⋆ B)

Proof. We have seen (Theorem 1.1.15) that there is an equivalence

w : (♮A→ B) ≃ (A→ B).

So we need to show that for every f : ♮A→ B, there is an equivalence

( f (a♮) = b) ≃ (w( f )(a) = b)

but w is precomposition with the unit, so the type on the right is also ( f (a♮) = b).

Proposition 2.1.23. For dull pointed types (A, a) and (B, b), post-composition with (−)♮ : ♮B → B
induces an equivalence

♮(♮A→⋆ ♮B) ≃ ♮(♮A→⋆ B)

Proof. Because ♮ commutes with Σ by Proposition 1.1.18, we can again apply Lemma 2.1.21 so it is
enough to show that the map

∑( f :♮(♮A→♮B))♮( f
♮
(a♮) = b♮) ≃ ∑(g:♮(♮A→B))♮(g

♮
(a♮) = b)

induced by post-composition is an equivalence.
First, we know by Theorem 1.1.24 that

w : ♮(♮A→ ♮B) ≃ ♮(♮A→ B)

Explicitly, this is

w( f ) ≡ (λx. f
♮
(x)♮)♮

So we need to produce for every f : ♮(♮A→ ♮B) an equivalence

♮( f
♮
(a♮) = b♮) ≃ ♮((w( f ))♮(a♮) = b)
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On the right we calculate

(w( f ))♮(a♮) ≡ [(λx. f
♮
(x)♮)♮]♮(a♮) ≡ (λx. f

♮
(x)♮)(a♮) ≡ f

♮
(a♮)♮

And then we have

♮( f
♮
(a♮) = b♮) ≡ ♮(( f

♮
(a♮))♮♮ = b♮) (by the η-rule)

≡ ♮((w( f ))♮(a♮)♮ = b♮) (by the above calculation)

≃ ♮((w( f ))♮(a♮) = b) (by left exactness and idempotence)

One then has to check that this equivalence is the one that is induced by composition with the
counit, but this follows from the definition of the left-exactness equivalence.

Proposition 2.1.24 (Dull Self-adjointness for Pointed Types). For any dull pointed types A and B, there
is an equivalence

♮(A→⋆ ♮B) ≃ ♮(♮A→⋆ B)

Proof. By Proposition 2.1.22 (where ♮B is a space by Proposition 1.1.11), (A→⋆ ♮B) ≃ (♮A→⋆ ♮B).
Using univalence, (λX : U .♮X) preserves equivalences, so we have

♮(A→⋆ ♮B) ≃ ♮(♮A→⋆ ♮B)

Then by Proposition 2.1.23 we have ♮(♮A→⋆ ♮B) ≃ ♮(♮A→⋆ B).

2.1.2 Synthetic Stabilisation

One important feature of spectra that we would like to capture synthetically is an adjunction
relating spaces and spectra:

Spec

Space⋆

Ω∞Σ∞ ⊣

The Σ∞ operation ‘freely stabilises’ a pointed space. Once we have imposed some axioms, we will
find that the homotopy groups of the spectrum Σ∞X correspond to the stable homotopy groups of
the space X.

Recall from the introduction that the ∞-category of spectra may be defined as the limit

Spec = lim←−
(
· · · Ω−→ S∗

Ω−→ S∗
Ω−→ S∗

)
and that spectra can presented concretely as a sequence of pointed spaces X0, X1, . . . with X0 ≃ ΩX1,
X1 ≃ ΩX2, . . . . Then Ω∞ sends a spectrum to the space X0. It is named Ω∞ as we have ‘applied
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Ω infinitely many times’ to reach the end of the limit. The left adjoint Σ∞ sends a space X to the
spectrification of its suspension pre-spectrum (see Section 2.3 below), i.e. we can make a sequence
of pointed spaces X, ΣX, ΣΣX, . . . with maps X →⋆ ΩΣX, ΣX →⋆ ΩΣΣX . . . given by the unit of
the Σ ⊣ Ω adjunction. These maps are not equivalences, which is corrected by replacing each space
by a certain colimit, a process called spectrification.

Here, we instead define an abstract/synthetic variant of this adjunction, which can be inter-
preted in this way in PSpec. In this section, we will use the notation S and Σ∞/Ω∞ because of the
intended interpretation in PSpec, but these will be abstract operations that exist in any model.

Recall from Proposition 2.1.12 that our synthetic spectra are closed under Σ and Ω. These are
the ordinary suspension and loop-space constructions for types, which do turn out to correspond
semantically to the correct operations of suspension and loop space on actual spectra. This is
because Spec is a full subcategory of PSpec, and the limits and colimits defining suspension and
loop space already land in Spec, so they coincide with the limits and colimits calculated in the
subcategory.

Proposition 2.1.25. For dull spectra E and F, suspension and loop space are dull adjoints, i.e.

♮(ΣE→ F) ≃ ♮(E→ ΩF)

In this statement we are implicitly using the canonical point ⋆F : F to form the loop-space ΩF.

Proof. By Proposition 2.1.10, it is equivalent to show

♮(ΣE→⋆ F) ≃ ♮(E→⋆ ΩF)

so this follows by functoriality of ♮ from the fact that suspension and loop space are adjoint for
(general) types and pointed maps [HoTTBook, Lemma 6.5.4].

Using S, we define Ω∞ : ♮Spec→ Space⋆ as follows:

Definition 2.1.26. For E : Spec, define the space

Ω∞E :≡ ♮(S→ E)

which is pointed by the constant zero map (λ .⋆E)
♮.

Remark 2.1.27. To gain intuition for why this is the right definition, we can consider the pointed
spaces model of Section 3.3. The analogue of S there is B, the two-point space S0 living over the
point. The base of the function type B → E is equivalent to the type of all basepoint-preserving
maps from the upstairs of B to the upstairs of E. The basepoint is fixed, and there is one free point
that can be mapped to any point of the upstairs E. So the base space of B→ E indeed corresponds
to the upstairs of E.

For spectra, similar reasoning applies, using the Σ∞ ⊣ Ω∞ adjunction more explicitly, and that
the sphere spectrum is the stabilisation of the two-point space:

MapSpec(S, E) ≃ MapSpec(Σ
∞S0, E) ≃ MapS⋆(S

0, Ω∞E) ≃ MapS (1, Ω∞E) ≃ Ω∞E

So we take ‘MapSpec(S, E)’ as our definition of Ω∞E.
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One application of Ω∞ is defining the homotopy groups of a spectrum, in the sense that is used
in stable homotopy theory:

Definition 2.1.28. The S-shifted homotopy groups of a spectrum E are defined by

πs
nE :≡ πn(Ω∞E)

Simply calculating πn(E) will not do the correct thing: we will see later that, after imposing a
stability axiom (Section 2.2), spectra are ∞-connected 2.2.12, so πn(E) ≃ 1 always.

The left adjoint Σ∞ : Space⋆ → Spec then has a surprisingly simple formula:

Definition 2.1.29. For X a pointed space, define Σ∞X :≡ X ∧ S.

This is left adjoint roughly because maps of spectra are pointed maps, and −∧ A ⊣ A→⋆ −
for any A.

First, we check that Σ∞ lands in spectra:

Proposition 2.1.30. For any space X, Σ∞X is a spectrum.

Proof. The pushout diagrams defining X ∨ S and X ∧ S are

1 X

S X ∨ S
⌜

X ∨ S X× S

1 Σ∞X
⌜

Because ♮ preserves pushouts by Proposition 1.1.29 and products by Proposition 1.1.18, and S is a
spectrum, so ♮S ≃ 1, we can calculate

1 ♮X

1 ♮(X ∨ S) ≃ ♮X
⌜

♮X ♮X

1 ♮(Σ∞X) ≃ 1
⌜

because the top of the second diagram is the identity, and the pushout of a map along the identity
is the same map.

Proposition 2.1.31. Σ∞ and Ω∞ are (dull) adjoints: there is an equivalence

♮(Σ∞X → E) ≃ (X →⋆ Ω∞E)

where X is a pointed space and E is a spectrum.
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Proof.

X →⋆ Ω∞E ≡ (X →⋆ ♮(S→⋆ E))

≃ ♮(X →⋆ ♮(S→⋆ E)) (− →⋆ ♮− is a space )

≡ ♮(♮X →⋆ (S→⋆ E)) (Proposition 2.1.24)

≃ ♮(X →⋆ (S→⋆ E)) (X is a space)

≃ ♮(X ∧ S→⋆ E)

≡ ♮(Σ∞X →⋆ E)

≃ ♮(Σ∞X → E) (Proposition 2.1.10, Proposition 2.1.30)

Here we use currying for pointed maps A→⋆ (B→⋆ C) ≃ (A ∧ B)→⋆ C, which has been proved
in type theory [van18, Theorem 4.3.28].

Remark 2.1.32. In the pointed spaces model, for a pointed space X, X ∧B works out to be BX ∧ 1
in the base (which is indeed contractible). Over this point, we are calculating the cofibre of the map

X + 1 ≃ X ∨ S0 → X× S0 ≃ X + X

which is the identity on the first component X and the basepoint inclusion on the second. So the
first copy of X is crushed to a point, and identified with the basepoint of the second copy of X.

In all, the operation takes a pointed ‘space’ X to a ‘spectrum’ Σ∞X, moving X from the base to
the unique fibre, internalising the analytic pointing as synthetic pointing.

In PSpec we have to work a little harder to justify this definition. Σ∞ is a functor from pointed
spaces to spectra, but we can precompose with the functor (−)+ : S → S∗ to get a functor from
unpointed spaces. This is typically written Σ∞

+ : S → Spec, and is left adjoint to the functor given
by computing the pointed space Ω∞ and forgetting the basepoint.

As a left adjoint, Σ∞
+ preserves colimits, and because every space is the colimit of its points, we

calculate
Σ∞
+(X) ≃ Σ∞

+(colimX 1) ≃ colimX Σ∞
+(1) ≃ colimX Σ∞(S0) ≃ colimX S

I.e., the colimit of the constant diagram on X at S. For us, such a constant diagram is given by
the parameterised spectrum X× S, placing a copy of S over every point in X. The desired colimit
can be computed as the cofibre of X → X × S which is the basepoint in the second component,
crushing the base X to a point. We can take this as our type-theoretic definition of Σ∞

+ :

Σ∞
+(X) :≡ cofib(X → X× S)

To get back to Σ∞(X) for X a pointed type, we have to crush the ‘extra copy of S’ that was
added over the new basepoint: this is now taking the cofibre of the composite S→ X× S→ Σ∞

+X
which is the basepoint in the first component. Combining the two cofibre diagrams, in all we have
calculated the smash product X ∧ S.
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2.1.3 Commutativity of the Adjunctions

So far, we have seen that we have the three adjunctions in the following diagram (the two vertical
sides are the same):

Space⋆ Space⋆

Spec Spec

Σ

Σ∞

⊥

⊢
Ω

Σ∞⊢
Σ

Ω∞

⊥
Ω

Ω∞

We can also show that the diagram commutes.

Remark 2.1.33. In pointed spaces it is clear this should be true, as the Σ∞ ⊣ Ω∞ adjunction simply
moves pointed spaces into the fibre over a point and back, and the suspension/loop space of a
spectrum is calculating the suspension/loop space of the unique fibre.

For actual spectra, consider a spectrum again presented as a sequence of pointed spaces
(E0, E1, . . . ). The loop space of such an Ω-spectrum can be calculated by shifting the spaces over by
one, giving Ω-spectrum (ΩE0, E0, E1, . . . ), so extracting the 0th space commutes with calculating
the loop space.

The suspension of an Ω-spectrum can be calculated by shifting the spaces the other way, giving
(E1, E2, . . . ). Leaving aside spectrification briefly, Σ∞X is given by the prespectrum (X, ΣX, Σ2X, . . . ),
so Σ∞ΣX ≡ (ΣX, Σ2X, . . . ) is exactly Σ∞X shifted by one.

Proposition 2.1.34. Ω∞ commutes with the ordinary loop space operation Ω:

Ω∞ΩE ≃⋆ ΩΩ∞E

naturally in E.

Note that the left-hand side is the loop space on spectra (and therefore pointed) types, while the
right-hand side is the loop space on pointed spaces, but both are implemented by the usual loop
space on types.

This is easy, after the following basic fact about loop spaces.

Lemma 2.1.35. For any pointed types A and B,

(A→⋆ ΩB) ≃⋆ Ω(A→⋆ B)

naturally in B.

Proof.

(A→⋆ ΩB) ≃⋆ (A→⋆ (S1 →⋆ B))

≃⋆ (S1 →⋆ (A→⋆ B))

≃⋆ Ω(A→⋆ B)
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The first equivalence is essentially the universal property of the higher inductive circle S1, while
the second follows from exchange for function types.

Proof of Proposition.

Ω∞ΩE ≡ ♮(S→⋆ ΩE) ≃⋆ ♮(Ω(S→⋆ E)) ≃⋆ Ω♮(S→⋆ E) ≡ ΩΩ∞E

For any pointed type, ♮Ω(A, a) ≃⋆ Ω(♮A, a♮) follows from Proposition 1.1.19.

In the other direction, we have:

Proposition 2.1.36. Σ∞ commutes with Σ:

ΣΣ∞X ≃ Σ∞ΣX

naturally in X.

Proof. First, some properties of the suspension and smash higher inductive types in ordinary homo-
topy type theory are that ΣX ≃ S1 ∧ X [Bru16, Proposition 4.2.1] and smash is associative [van18,
Definition 4.3.33]. Thus, we can calculate

ΣΣ∞X ≡ Σ(X ∧ S) ≃ S1 ∧ (X ∧ S) ≃ (S1 ∧ X) ∧ S ≃ Σ∞ΣX

2.2 Stability

Classically, the category of spectra has a number of special properties, including a zero object,
biproducts (products and coproducts that are isomorphic), any pushout square is a pullback square
and vice versa, and suspension and loop space are inverse (not only adjoint). Thus far, our definition
of synthetic spectra has a zero object: 1 is initial as well as terminal because ♮(1→ E) ≃ ♮E ≃ 1. To
establish the other properties, it turns out to suffice to add an apparently weaker axiom asserting
that products and coproducts in Spec coincide—we will show that this implies stability in the sense
of pullback and pushout squares coinciding, which in turn implies that suspension and loop space
are an equivalence.

Externalised, the argument in this section amounts to a proof of the following:

Theorem 2.2.1. If an ∞-locus is semiadditive then it is stable.

Spectra are pointed, so the coproduct in the category of spectra is the wedge ∨, in the following
sense:

Proposition 2.2.2. For any dull spectra E, F and G, there is an equivalence

♮(E ∨ F → G) ≃ ♮(E→ G)× ♮(F → G)

induced by the inclusions of E and F into E ∨ F.
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Proof. We have

♮(E ∨ F → G) ≃ ♮(E ∨ F →⋆ G)

≃ ♮((E→⋆ G)× (F →⋆ G))

≃ ♮(E→⋆ G)× ♮(F →⋆ G)

≃ ♮(E→ G)× ♮(F → G)

by using Proposition 2.1.10 to add and remove the pointing of the maps.

For any pointed types A and B there is a canonical wedge inclusion ιA,B : A ∨ B→ A× B.

Axiom S. For any dull spectra E and F, the wedge inclusion ιE,F : E ∨ F → E× F is an equivalence.

This is asserting the existence of a term

axS : ∏(E:♮Spec)∏(F:♮Spec)isEquiv(ιE♮,F♮
)

Remark 2.2.3. Some care must be taken when devising an internal version of the external fact that
the subcategory Spec ↪→ PSpec is stable. The obvious thing to try is an axiom that applies to any
E : Spec. The issue is that when asserting the existence of a closed term, like the axiom above, the
term can be weakened to any ambient context.

Semantically, the question is whether the axiom holds in all slice categories PSpec/Γ, and it
does not. A ‘spectrum’ (in the sense of a ♮-connected type) in PSpec/Γ consists of a family of
spectra E over the base space of Γ, together with spectrum maps between the fibres of E and the
corresponding fibres of Γ. This category is not stable in general, as it lacks a zero object (among
other things). If the context Γ itself consists of a single spectrum F, then the existence of a zero
object would imply that any map E→ F splits.

The axiom does hold in PSpec/X when X is a space, as ♮-connected types in PSpec/X are
exactly the families of spectra over X, comprising a stable category. Syntactically this requirement
corresponds to having a dull context, hence the restriction to types in ♮Spec in Axiom S.

We can weaken our axS to an arbitrary context Γ and still be safe, as the spectra E♮ and F♮ will
continue to only depend on the underlying space of Γ.

Remark 2.2.4. This axiom rules out the pointed spaces model, as the wedge and product of ‘spectra’
in that model correspond to the ordinary wedge and product of the pointed types in the unique
fibre. But it does not rule out the trivial model where ♮ is the identity functor. There, the only
‘spectrum’ is the point, and the wedge inclusion 1∨ 1→ 1× 1 is certainly an equivalence.

Proposition {S} 2.2.5. For two dull spectra E and F, the smash product E ∧ F and the join E ∗ F are both
contractible.

Proof. Recall that the smash product E ∧ F is the cofibre of the wedge inclusion, i.e. the pushout

E ∨ F E× F

1 E ∧ F
⌜
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Axiom S asserts that the top map is an equivalence, so the bottom-right corner is equivalent to the
bottom-left. For the join, we have E ∗ F ≃ Σ(E ∧ F) by [Cav15, Theorem 4.19], and the suspension
of a contractible type is contractible.

Here, E ∧ F is the smash product of types, and is not related to the ⊗ type.
Next, we show that Axiom S indeed makes pullbacks and pushouts in Spec coincide, mainly as

a consequence of the Little Blakers-Massey Theorem [ABFJ20]. As a first step:

Lemma 2.2.6. For any pointed type A, there is a pullback square

ΣΩA A ∨ A

A A× A

ι

∆

where the map on the left is the counit of the Σ ⊣ Ω adjunction.

This will follow quickly from the following consequence of descent for pushouts:

Theorem 2.2.7 ([Rij18, Theorem 2.2.12]). Consider a commuting cube of types

S′

A′ S B′

A X′ B

X

and suppose the vertical squares are pullback squares. Then the commuting square

A′ ⊔S′ B′ X′

A ⊔S′ B X

is a pullback square.

Proof of Lemma 2.2.6. Consider the commutative cube

ΩA

1 1 1

A A A

A× A,
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where the vertical map A→ A× A is the diagonal, and the maps A→ A× A on the left and right
are the identity on one component and constant at the point on the other. All of the vertical squares
are pullbacks.

Now note that the pushout of the top span is ΣΩA, and the pushout of the bottom span is
A ∨ A, so by the above theorem we have the desired pullback square (reflected diagonally).

Corollary {S} 2.2.8. For any dull spectrum, the canonical map ΣΩE→ E is an equivalence.

Proof. By Lemma 2.2.6, this map is the pullback of the wedge inclusion ι along ∆. By Axiom S, ι is
an equivalence, and the pullback of an equivalence along any map is an equivalence.

Definition 2.2.9. Recall [HoTTBook, Definition 7.5.1] that a type A is n-connected if its n-truncation
is contractible, and a map is n-connected if its fibre is an n-connected type for all base points. A
type or function is ∞-connected if it is n-connected for every n.

We will use the following Lemmas about n-connected types:

Lemma 2.2.10. Suppose that a type A is 0-connected and P : A → Prop is a family of propositions
(−1-types). Then if P(a) holds for some a : A, then P(a′) holds for all a′.

Proof. Assume an a such that P(a) and another point a′. Since A is 0-connected, its 0-truncation is
contractible, and therefore its 0-truncation is a proposition [HoTTBook, Theorem 7.1.10], so we get
a path |a′| =∥A∥0

|a|. Commuting the truncation with the loop space gives ∥a′ = a∥−1 [HoTTBook,
Theorem 7.3.12]. That is, a′ is merely equal to a. But P(a′) is a proposition by assumption, so to
prove it, we can assume a′ = a, and then transport the assumed proof of P(a).

Lemma 2.2.11. • If A and B are 0-connected then so is A× B

• If A, B are 0-connected and C is 1-connected, then for any maps f : A → C and g : B → C, the
pullback A×C B is 0-connected.

Proof. For the first part, truncation preserves products [HoTTBook, Theorem 7.3.8], so to show
∥A× B∥0 is contractible, we can equivalently show that ∥A∥0 × ∥B∥0 is contractible. But ∥A∥0 and
∥B∥0 are contractible by assumption, and 1× 1 ≃ 1.

For the second, the pullback is given by the type ∑((x,y):A×B) f (x) =C g(y). By [HoTTBook,
Theorem 7.3.9, Theorem 7.3.12], we have∥∥∥∑((x,y):A×B) f (x) =C g(y)

∥∥∥
0

≃
∥∥∥∑((x,y):A×B)∥ f (x) =C g(y)∥0

∥∥∥
0

≃
∥∥∥∑((x,y):A×B)| f (x)| =∥C∥1

|g(y)|
∥∥∥

0

≃ ∥A× B∥0

≃ 1

The second-to-last step is because ∥C∥1 is contractible by assumption, so any identity type in it is
as well, and the last step is by the previous part, since A and B are 0-connected.
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Corollary {S} 2.2.12. Dull spectra and dull maps between them are ∞-connected.

Proof. For types, we prove by induction on n that every dull spectrum E is n-connected. Every
type is (−2)-connected, since the (−2)-truncation is contractible by definition. For the inductive
step, suppose E is a spectrum, and we want to show that it is (n + 1)-connected. Then ΩE is
also a spectrum by Proposition 2.1.12 and dull, so by the inductive hypothesis (which applies
to all dull spectra, so in particular ΩE) it is n-connected. Suspension increases connectivity by
1 [HoTTBook, Theorem 8.2.1], so ΣΩE is (n + 1)-connected. But by Corollary 2.2.8, E ≃ ΣΩE, so E
is (n + 1)-connected as well.

Now for maps, fix an n. The fibre of a dull map f : E → F over the basepoint is the type
fib f (⋆F) :≡ ∑(x:E) f (x) = ⋆F, which is a dull spectrum and thus is an ∞-connected type by
above, and therefore n-connected. We now show that this implies that all fibres are n-connected
using Lemma 2.2.10. First, F is a dull spectrum, and thus by the previous part it is in particular 0-
connected. For any type A, the type “A is n-connected” is a proposition, because it unfolds to “the n-
truncation of A is contractible”, and being contractible (like all h-levels) is a proposition [HoTTBook,
Theorem 7.1.7]. Thus, fib f (⋆F) being n-connected implies the same for fib f (x) for any x : F, so f is
an n-connected map.

We will now make use of the Little Blakers-Massey Theorem and its dual, which is the spe-
cialisation of the Generalised Blakers-Massey Theorem [ABFJ20] to the identity modality. The
Generalised Theorem has been formalised in The HoTT Library [Shu19b]. First, some notation:

Definition 2.2.13. For f : A→ B, let ∆ f denote the canonical map A→ A×B A.

Definition 2.2.14. For f : A → B and g : C → D, the pushout product f 2 g is defined to be the
canonical gap map

A× C A× D

B× C P

B× D

⌜
f2g

where P :≡ (A× D) ⊔A×C (B× C).

Lemma 2.2.15. The fibres of ∆ f are given by

fib∆ f (a, a′, p) ≃ ((a, p) =fib f ( f (a′)) (a′, refl f (a))),

and in particular,
fib∆ f (a, a, refla) ≃ Ω(a,refla)fib f ( f (a)).
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Proof. Direct calculation:

fib∆ f (a, a′, p) :≡ ∑(x:A)(x, x, refl f (x)) = (a, a′, p)

≃ ∑(x:A)∑(l:x=a)∑(r:x=a′)!ap f (l) · ap f (r) = p

≃ ∑(r:a=a′)ap f (r) = p

≃ ∑(r:a=a′)!ap f (r) · p = refl f (a′)

≃ ∑(r:a=a′)r∗(p) = refl f (a′)

≃ (a, p) = (a′, refl f (a′))

Proposition 2.2.16. The pushout product is the ‘external fibrewise join’, in the sense that for b : B and
d : D,

fib f2g(b, d) ≃ fib f (b) ∗ fibg(d)

Proof. This is another application of descent. Consider the cube

fib f (b)× fibg(d)

fib f (b) A× C fibg(d)

A× D 1 B× C

B× D

The back vertical map extracts the A and C from the fibres, the side vertical maps extract the A or
C and pair with b or d in the other component, and the front vertical map is (b, d). By singleton
contractibility and paths in products being component-wise, all the vertical sides are pullback
squares. The corresponding square

fib f (b) ∗ fibg(d) 1

P B× D
f2g

is a pullback by Theorem 2.2.7, so fib f (b) ∗ fibg(d) is equivalent to the fibre of f 2 g at (b, d).

We now quote the Theorem that actually does the work:

Theorem 2.2.17 (Little Blakers-Massey Theorem, [ABFJ20, Corollary 4.1.4, Theorem 3.5.1]). Consider
the following square.

Z Y

X W

g

f h

k
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• If the square is a pushout and ∆ f 2 ∆g is an equivalence, then the square is also a pullback.

• If the square is a pullback and h 2 k is an equivalence, then the square is also a pushout.

Theorem {S} 2.2.18. A dull commutative square in spectra is a pullback square iff it is a pushout square.

Proof. Suppose a dull commutative square in spectra

E G

F H

g

f h

k

By Definition 2.1.8 and Proposition 2.1.9, we have base points ⋆E, ⋆F, ⋆G, ⋆H, and the maps are all
pointed. Thus, the fibres all have dull points— e.g. fib f (⋆F) :≡ ∑(z:E) f (z) = ⋆F has a point given
by ⋆E and the path showing f is pointed.

To use Theorem 2.2.17, we just need to show that ∆ f 2 ∆g and h 2 k are equivalences, which we
will do using the “contractible fibres” definition of equivalence.

The fibre of ∆ f 2∆g over the basepoint p0 :≡ ((⋆E, ⋆E, refl f (⋆E)), (⋆E, ⋆E, reflg(⋆E))) is Ω(fib f (⋆F)) ∗
Ω(fibg(⋆G)) by Lemma 2.2.15 (where f (⋆E) = ⋆F and g(⋆E) = ⋆G because the maps are pointed)
and Proposition 2.2.16. Again by Proposition 2.2.16, the fibre of h 2 k over q0 :≡ (⋆H, ⋆H) is
fibh(⋆H) ∗ fibk(⋆H). To show that these are both contractible, by Proposition 2.2.5, it suffices to show
that the pieces of the join are dull spectra. By Proposition 2.1.12, spectra are closed under fibres and
loop spaces, and for the basepoints these types are dull because the basepoints are. This shows that
fib∆ f2∆g(p0) and fibh2k(q0) are contractible.

Since the fibres over p0 and q0 are contractible, to show that general fibres fib∆ f2∆g(p) and
fibh2k(q) over any p and q are contractible, by Lemma 2.2.10 it suffices to show that p : (E×F E)×
(E×G E) and q : H × H are elements of 0-connected types, since being contractible is a proposition.
For q, by Corollary 2.2.12, H is ∞-connected and in particular 0-connected, so H× H is 0-connected
by Lemma 2.2.11. For p, again using closure under products, we need to show that (E×F E) and
(E×G E) are 0-connected. By Corollary 2.2.12, E is 0-connected and F, G are 1-connected, so the
pullbacks are 0-connected as well by Lemma 2.2.11. This use of 0-connectedness is necessary
because the fibre of a map between dull spectra is only dull when the point over which we are
taking the fibre is, so the argument in the previous paragraph can be applied directly to p and
q.

We showed that the counit ΣΩE → E is an equivalence in Corollary 2.2.8, and we can now
show that the unit is as well:

Corollary {S} 2.2.19. For any E : Spec, the unit map E→ ΩΣE is an equivalence.

Proof. The pushout square defining the suspension is

E 1

1 ΣE

⌟

⌜
s

n
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By Theorem 2.2.18, this is also a pullback square. However, we also have a pullback square

n =ΣE s 1

1 ΣE

⌟

⌜
s

n

so uniqueness of pullbacks gives an equivalence E ≃ (n = s). If we consider the suspension to be
pointed by n, then Ω(ΣE) is the type n = n. But since E is pointed, we have a pathmer(⋆E) : s = n,
and composition with this path gives an equivalence (n = s) ≃ (n = n), so E ∼= Ω(ΣE).

The unit of the adjunction Σ ⊢ Ω sends e : E to the path mer(e)·!mer(⋆E), so the composite
equivalence is indeed the unit.

2.2.1 The Universe and Function Types as Families

Like any type, the universe can be decomposed as a family of spectra over a space via Corollary 2.1.6.
The stability axiom lets us describe this decomposition surprisingly explicitly: in this section we
will show that

U ≃ ∑(X:Space)∑(E:X→♮Spec)∏(x:X)Σ(E(x))♮

So, a term of the universe consists of a parameterised spectrum specified by a space X :
Space and a family of dull spectra E : X → ♮Spec, together with an element of the spectrum
∏(x:X) Σ(E(x))♮. This latter spectrum can be thought of as the ‘twisted cohomology’ of the parame-
terised spectrum (X, E), fibrewise shifted one dimension.

There is a description of function types as a family that looks perhaps even more peculiar. If E
and F are dull spectra, then

(E→ F) ≃ ♮(E→ F)× F

and so the spectral information of E→ F is completely determined by the spectral information of
the codomain.

We begin with a fact that holds for any lex modality:

Proposition 2.2.20.
U ≃ ∑(X:Space)X → Spec

Proof. Consider the unit map ♮(−) : U → Space. We can write U as the sum of fibres of this map,
by [HoTTBook, Lemma 4.8.2].

U ≃ ∑(X:Space)∑(B:U )(♮B = X)

Using univalence, this is

U ≃ ∑(X:Space)∑(B:U )(♮B ≃ X)

So it remains to show that (X → Spec) ≃ ∑(B:U )(♮B ≃ X). For this, first use the fact that Spec
classifies ♮-connected maps, by [RSS20, Corollary 1.42]:

(X → Spec) ≃ ∑(B:U )∑( f :B→X) is-♮-connected( f )
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Now we need that ∑( f :B→X) is-♮-connected( f ) is equivalent to (♮B ≃ X). We are in the special case
that X is modal, so by the monadic universal property of ♮,

∑( f :B→X) is-♮-connected( f ) ≃ ∑(g:♮B→X) is-♮-connected(g ◦ ηB)

Because ♮ is lex, the 2-out-of-3 property holds for ♮-connected functions [RSS20, Theorem 3.1.xi].
The unit ηB is always ♮-connected [RSS20, Theorem 1.32], so g ◦ ηB is ♮-connected iff g is. Finally,
any function between modal types is modal, and any function that is both modal and connected is
an equivalence, so

is-♮-connected(g ◦ ηB) ≃ is-♮-connected(g) ≃ isEquiv(g)

and we are done.

Proposition 2.2.21. The above equivalence is implemented by A 7→ (♮A, λx.Ax) in the forward direction
and (X, E) 7→ ∑(x:X) E(x) in the backwards direction.

Maybe confusingly, the equivalence of Proposition 2.2.20 does not exhibit U itself as a space
(X : Space) equipped with a family of spectra over each point (X → Spec). The problem is that
Spec is not itself a spectrum, and so neither is X → Spec.

The type ♮U also contains data from the X → Spec component:

Proposition 2.2.22. There is an equivalence

♮U ≃ ∑(X:Space)X → ♮Spec

Proof. From the equivalence earlier we know

♮U ≃ ♮
(

∑(X:Space)X → Spec
)

≃ ∑(X:♮Space)♮
(
X♮ → Spec

)
(♮ preserves Σ)

≃ ∑(X:Space)♮ (X → Spec) (Space is modal)

≃ ∑(X:Space)X → ♮Spec (X is modal)

We can use this to decompose the universe more explicitly into a space with a family of spectra
over it.

Proposition 2.2.23.
U ≃ ∑(X:Space)∑(E:X→♮Spec)∏(x:X)SpecE(x)

where SpecE(x) is the spectrum over the point E(x) : ♮Spec.

Proof. Fix a pair (X, E) : ∑(X:Space) X → ♮Spec, thinking of the pair as an element of ♮U . We have a
‘unit’ map (

∑(X:Space)X → Spec
)
→

(
∑(X:Space)X → ♮Spec

)
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given by transporting the unit ηU : U → ♮U along the equivalences of Proposition 2.2.20 and
Proposition 2.2.22, and we want to calculate the fibre of this map over (X, E). This map is just
postcomposition with the unit ηSpec : Spec→ ♮Spec, and so this fibre is given by

U(X,E) ≃ fibη◦−(E) ≃ ∏(x:X)fibηSpec(E(x)) ≃ ∏(x:X)SpecE(x)

using an easy Lemma on the fibre of the postcomposition map.

Lemma 2.2.24. Let A, B, C : U , and g : B→ C. Then for h : A→ C,

fibg◦−(h) ≃ ∏(a:A)fibg(h(a))

Proof.

fibg◦−(h) ≃ ∑( f :A→B)g ◦ f = h

≃ ∑( f :A→B)∏(a:A)g( f (a)) = h(a)

≃ ∏(a:A)∑(b:B)g(b) = h(a)

≃ ∏(a:A)fibg(h(a))

The above equivalence is about as far as we can go without assuming any axioms.
Our goal now is to show that the stability axiom implies that SpecE ≃ ΣE♮ for any dull spectrum

E. The stability axiom implies that Σ is an equivalence, so it will suffice to show that E♮ ≃ SpecΩE
for any E: our original claim will follow when this is instantiated at ΣE, transporting SpecΩΣE
along the ΩΣE→ E equivalence.

Lemma 2.2.25. There is a pullback square

1 ∑(F:SpecΩE)
F

E SpecΩE

⋆E pr1

Proof. Define the map E→ SpecΩE by sending e : E to (e = ⋆E) : Spec. This type does lie over ΩE
via the equivalence (e = ⋆E)

♮ ≃ (⋆E = ⋆E)
♮ given by composing with the canonical map ⋆E = e.

Now the pullback can be calculated as

∑(e:E)∑(F:SpecΩE)
F× (F = (e = ⋆E))

≃ ∑(e:E)(e = ⋆E)

≃ 1

using singleton elimination twice.

To define the map the other way, we need to use stability.
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Lemma {S} 2.2.26. There is a pullback square

∑(F:SpecΩE)
F 1

SpecΩE E

pr1
⋆E

Proof. Note that both SpecΩE and ∑(F:SpecΩE)
F are spectra. The first because it ‘the spectrum over

a point in a type’ and these are always spectra by Proposition 2.1.5, and the second because ♮

preserves Σ-types and both components are spectra.
The basepoint point of SpecΩE is given by ΩE, so the fibre of the left map is the type ΩE and by

stability we have a fibre sequence

ΩE→
(

∑(F:SpecΩE)
F
)
→ SpecΩE → E

Looking at the right side of that sequence gives the pullback square we wanted.

Lemma {S} 2.2.27. The maps E→ SpecΩE and SpecΩE → E in the above pullback squares are inverse.

Proof. Pasting the pullback squares together one way, we have that

1 1

E E

is a pullback. By stability it is also a pushout, and because the top and left maps are necessarily the
canonical inclusion of the basepoint, the map along the bottom must be equal to the identity.

Pasting the other way around, we have a pullback square

∑(F:SpecΩE)
F ∑(F:SpecΩE)

F

SpecΩE SpecΩE

pr1 pr1

g

But we can also calculate the pullback of the same two maps in the ‘ordinary’ way:

∑(F:SpecΩE)
g(F) ∑(F:SpecΩE)

F

SpecΩE SpecΩE

(F, f ) 7→(g(F), f )

pr1 pr1

g

By the uniqueness of pullbacks, there is an equivalence

∑(F:SpecΩE)
g(F) ∑(F:SpecΩE)

F

SpecΩE

∼

pr1 pr1
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Therefore there is a fibrewise equivalence ∏(F:SpecΩE)
g(F) ≃ F, which by univalence gives a

homotopy ∏(F:SpecΩE)
g(F) = F, so g is equal to the identity.

Combining the above equivalence with Proposition 2.2.23, we have our result:

Theorem {S} 2.2.28.
U ≃ ∑(X:Space)∑(E:X→♮Spec)∏(x:X)Σ(E(x))♮

The above has a couple of curious consequences. We know from the above that ∑(F:SpecE)
F is

contractible for any spectrum E, so:

Proposition {S} 2.2.29. The map ∑(E:Spec) E→ Spec classifying ♮-connected maps is equal to the counit
♮Spec→ Spec.

Proof. First, as with any type, Spec ≃ ∑(N:♮Spec) SpecN . Then

∑(E:Spec)E ≃ ∑((N,F):∑(N:♮Spec) SpecN)
F

≃ ∑(N:♮Spec)∑(F:SpecN)
F

≃ ♮Spec

and we can check that the map ♮Spec→ ∑(E:Spec) E is given by N 7→ (N♮, ⋆N).

The stability axiom implies that suspension and loop-space are automorphisms Σ, Ω : ♮Spec→
♮Spec. We can extend these to automorphisms of ♮U via Proposition 2.2.20, computing Σ and Ω
fibrewise.

Definition 2.2.30. Define

Σ̃A :≡ ∑(x:♮A)ΣAx

Ω̃A :≡ ∑(x:♮A)ΩAx

Our decomposition of the universe can be equivalently described using this Σ̃ operation:

Lemma {S} 2.2.31.

U ≃ ∑(A:♮U )∏(x:♮A)(Σ̃A)x

These fibrewise operations do not extend to automorphisms of U , but we do have the following:

Proposition {S} 2.2.32. The fibrewise shifts extend to equivalences Σ̃ : U ≃ Ω̃U and Ω̃ : U ≃ Σ̃U

Proof. Using Theorem 2.2.28, we can calculate Ω̃U to be

Ω̃U ≡ ∑(A:♮U )ΩUA

≃ ∑(A:♮U )Ω∏(x:♮A)ΣAx

≃ ∑(A:♮U )∏(x:♮A)ΩΣAx

≃ ∑(A:♮U )∏(x:♮A)Ax
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And now we can define an equivalence(
∑(A:♮U )∏(x:♮A)(Σ̃A)x

)
→

(
∑(A:♮U )∏(x:♮A)Ax

)
by

(A, H) 7→ (Σ̃A, H)

Pre- and post-composing the above equivalence with the equivalences to U and Ω̃U gives the
result.

So U is also equivalent to

∑(A:♮U )∏(x:♮A)(Σ̃
n A)x

for any n ∈ Z, by repeatedly applying the above equivalence or its inverse. The choice n = 1 used
in Theorem 2.2.28 is distinguished from the others however: only when n = 1 is the map from U
given by the ‘obvious thing’ A 7→ A♮ in the first component.

Turning to function types, we can show that functions between dull types contain less informa-
tion than one might expect.

Proposition {S} 2.2.33. For dull spectra E and F,

(E→ F) ≃ F× ♮(E→ F)

Proof. We have the following Yoneda-style argument. For any dull type X,

♮(X → (E→ F))

≃ ♮
((

∑(x:♮X)Xx

)
→ (E→ F)

)
(Corollary 2.1.6)

≃ ♮∏(x:♮X)Xx → (E→ F) (Currying)

≃ ♮∏(x:♮X)Xx × E→ F (Uncurrying)

≃ ♮∏(x:♮X)Xx ∨ E→ F (Axiom S)

≃ ♮∏(x:♮X)(Xx → F)× (E→ F) (Proposition 2.2.2)

≃ ♮
(

∏(x:♮X)Xx → F
)
× ♮

(
∏(x:♮X)(E→ F)

)
≃ ♮(X → F)× ♮(♮X → (E→ F))

≃ ♮(X → F)× ♮(X → ♮(E→ F)) (Corollary 1.1.26)

≃ ♮(X → (F× ♮(E→ F)))

Now applying this equivalence to the dull map id(E→F) yields the equivalence we were looking
for.

This can be extended to functions between any dull types without too much trouble, by
decomposing the function type until the previous fact can be applied.
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Theorem {S} 2.2.34. For any dull types A and B

(A→ B) ≃
(

∑( f :♮(A→B))∏(x:♮A)B f
♮
(x♮)

)
Proof. Decomposing both A and B using Corollary 2.1.6 and rearranging:

A→ B ≃
(

∑(x:♮A)Ax

)
→

(
∑(y:♮B)By

)
≃ ∑(h:♮A→♮B)∏(x:♮A)Ax → Bh(x)

≃ ∑(h:♮A→♮B)∏(x:♮A)♮(Ax → Bh(x))× Bh(x)

≃ ∑(h:♮A→♮B)

(
∏(x:♮A)♮(Ax → Bh(x))

)
×

(
∏(x:♮A)Bh(x)

)
And then

∑(h:♮A→♮B)∏(x:♮A)♮(Ax → Bh(x)) ≃ ♮(A→ B)

by Proposition 2.1.16.

2.3 Relating Synthetic and Analytic Spectra

In the previous section, we showed that Axiom S gives synthetic spectra many of the properties
that we expect spectra to have. In this section, we investigate an additional axiom, which relates
the synthetic spectra to the concrete/analytic spectra that can be defined in pure homotopy type
theory. This allows results proved using the synthetic spectra to be transferred to analytic spectra,
and vice versa.

One can define (“Ω-”)spectra internally in type theory [van18; Cav15] as sequences of types
and connecting maps.

Definition 2.3.1. A sequential prespectrum J is a sequence of pointed modal types J : N→ Space⋆
together with pointed maps αn : Jn →⋆ ΩJn+1. A sequential spectrum is a prespectrum such that
the αn are pointed equivalences. The types of such objects are denoted SeqPreSpec and SeqSpec
respectively.

Definition 2.3.2. A morphism of sequential (pre)spectra f : Mor(I, J) is a sequence of pointed
maps f

n
: In →⋆ Jn that commute with the αn.

Remark 2.3.3. We need to restrict the types in the sequence to be modal so that semantically they
correspond to sequences of spaces. Otherwise we would be describing a spectrum object in PSpec⋆,
an object more complicated than an ordinary spectrum.

Our goal is to relate our spectra with these sequential spectra. We do this by describing a series
of (dull) adjoints:

Space⋆ SeqPreSpec SeqSpec Spec

susp

⊥ ⊥

spec

0th

⊥

L

ι R
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The left two adjunctions take place almost entirely in pure homotopy type theory: susp takes
a space X to the suspension prespectrum (X, ΣX, ΣΣX, . . .), and spec is spectrification, inverting
the connecting maps to equivalences. Their composite spec ◦ susp is thus an analytic analogue
of the Σ∞ stabilisation functor we defined in Section 2.1, taking a modal type to its suspension
analytic spectrum. The right adjoint ι is forgetful/an inclusion, while 0th selects the 0th term of
a pre-spectrum, and the composite 0th ◦ ι is an analytic analogue of Ω∞. All that takes us out of
ordinary HoTT is the requirement that the types involved are modal types. The new construction
in this section is the rightmost adjunction relating analytic and synthetic spectra, and an axiom
stating that it is an adjoint equivalence, making the two notions of spectra coincide.

Definition 2.3.4. For any pointed modal type X, we have the suspension sequential prespectrum
suspX where (suspX)n :≡ ΣnX, and the structure maps are the unit maps αn : ΣnX → ΩΣn+1X.

Note that all the ΣnX are modal, by Proposition 1.1.29.

Proposition 2.3.5. susp is left adjoint to taking the zeroth type of a sequential prespectrum.

Proof. Suppose we have a map X →⋆ J0. We need a map ΣX →⋆ J1 such that

X ΩΣX

J0 ΩJ1

commutes, equivalently, one such that

ΣX ΣX

ΣJ0 J1

commutes. Then ΣX →⋆ J1 is forced to be the composite of ΣX → ΣJ0 → J1. This argument
iterates to produce a map Mor(suspX, J), showing the data of such a morphism is equivalent to
that of a map X →⋆ J0.

Definition 2.3.6. For a sequential prespectrum J, the spectrification of J is given by

(specJ)n :≡ colimk Ωk Jn+k

Each (specJ)n is modal by Proposition 1.1.30 and Lemma 1.1.17. That these types actually
assemble into a sequential spectrum has not yet been proven in type theory, so we leave it as an
unjustified assertion — note that this assertion is a statement in pure homotopy type theory, and is
not dependent on the modal extension we use here, a proof of the assertion would certainly apply
when the types concerned happen to be modal.

Assertion 1. This formula defines a sequential spectrum, and the operation is left adjoint to the inclusion of
sequential spectra into sequential prespectra.
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Now we turn to the L ⊣ R adjunction relating these sequential spectra to our synthetic spectra.
First, we can extract a sequential prespectrum from any spectrum E.

Definition 2.3.7. For E : Spec, define RE : SeqPreSpec by

(RE)n :≡ Ω∞ΣnE

with connecting maps

(RE)n ≡ Ω∞ΣnE→⋆ Ω∞ΩΣΣnE ≃⋆ ΩΩ∞ΣΣnE ≃⋆ ΩΩ∞Σn+1E ≡ Ω(RE)n+1

The first map is given by functoriality of Ω∞ on the unit X →⋆ ΩΣX for X = ΣnE. The second
is derived from Proposition 2.1.34 and the third is essentially by definition, depending on how
iterated suspension is defined.

Proposition {S} 2.3.8. RE is a sequential spectrum.

Proof. By Proposition 2.1.12, spectra are closed under suspensions, so an induction shows that ΣnE
is a spectrum. Therefore the unit map ΣnE→⋆ ΩΣΣnE is an equivalence by Corollary 2.2.19, so the
connecting map defined above is a composite of equivalences.

Conversely, suppose we have a sequential prespectrum J : SeqPreSpec. We can produce a
spectrum LJ : Spec.

Definition 2.3.9. For J : SeqPreSpec let LJ : Spec be

LJ :≡ colim(Σ∞ J0 → ΩΣ∞ J1 → Ω2Σ∞ J2 → . . . )

where the maps Σ∞ Jn → ΩΣ∞ Jn+1 are given by

Σ∞ Jn → ΩΣΣ∞ Jn ≃ ΩΣ∞ΣJn → ΩΣ∞ΣΩJn+1 → ΩΣ∞ Jn+1

where the maps are the unit of Σ ⊢ Ω, Proposition 2.1.36, functoriality on the connecting map
Jn → ΩJn+1 of the prespectrum, and then the counit of Σ ⊢ Ω.

To see that this type is a spectrum, by Proposition 1.1.30, ♮LJ is equivalent to the colimit of the
♮ΩnΣ∞ Ji, and spectra are closed under loop spaces by Proposition 2.1.12, and Σ∞ of any type is a
spectrum by Proposition 2.1.30, so each of the terms of that colimit is contractible, so the colimit is
as well.

Remark 2.3.10. Let S : SeqPreSpec denote the sphere (analytic) prespectrum, i.e. the suspension
prespectrum of S0. Then LS ≃ S, because at each level of the colimit we have

ΩnΣ∞Sn ≡ Ωn(Sn ∧ S) ≃ Ωn(ΣnS) ≃ S

The first equivalence is Σn A ≃ S1 ∧ (S1 ∧ . . . (S1 ∧ A)) ≃ (S1 ∧ S1 . . . ∧ S1) ∧ A ≃ Sn ∧ A, using
associativity of smash and ΣA ≃ S1 ∧ A [Bru16, Proposition 4.2.1], [van18, Definition 4.3.33]. The
second is given by iterating ΩΣE ≃ E for a dull spectrum E (Corollary 2.2.19), noting that the
suspension of a dull spectrum is a spectrum by Proposition 2.1.12, and S is itself a spectrum.
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Proposition {S} 2.3.11. The operations L and R are dull adjoints:

♮(LJ →⋆ E) ≃ Mor(J, RE)

Proof. Suppose we have a dull map k : LJ →⋆ E. We can forget the fact that k is pointed using
Proposition 2.1.10. The data of k (using the universal property for maps out of a colimit) is
equivalent to a sequence of dull maps kn : ΩnΣ∞ Jn → E so that the squares

ΩnΣ∞ Jn Ωn+1Σ∞ Jn+1

E E

kn kn+1

commute.
We can transpose the k across the adjunctions to get maps k̂n : Jn →⋆ Ω∞ΣnE. This type on

the right is exactly (RE)n, so we just have to show that this collection of maps forms a morphism
of sequential prespectra. This mostly involves unwinding the definition of the map ΩnΣ∞ Jn →
Ωn+1Σ∞ Jn+1

Precompose the upper left corner with the equivalence

Ωn+1Σ∞ΣJn ≃ ΩnΩΣ∞ΣJn ≃ ΩnΩΣΣ∞ Jn ≃ ΩnΣ∞ Jn

to yield

Ωn+1Σ∞ΣJn Ωn+1Σ∞ Jn+1

E E

...

Ωn+1Σ∞ α̂n

kn+1

Since Σ ⊣ Ω, and for dull spectra Σ and Ω are inverses, we also have an adjunction Ω ⊣ Σ on dull
spectra. Transposing across this and Σ∞ ⊣ Ω∞ vertically, such squares are equivalent to squares

ΣJn Jn+1

(RE)n+1 (RE)n+1

...

α̂n

k̂n+1

Now transposing ‘diagonally’ along Σ ⊣ Ω, we get

Jn ΩJn+1

Ω(RE)n+1 Ω(RE)n+1

...

αn

Ωk̂n+1
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Finally, precompose the lower left corner with the equivalence βn : (RE)n ≃ Ω(RE)n+1 to get

Jn ΩJn+1

(RE)n Ω(RE)n+1

...

αn

Ωk̂n+1

βn

All we have left is to check is that the vertical map on the left is equal to k̂n. Tracing through
what we have done, it is equal to

Jn → ΩΣJn → ΩΩ∞Σn+1Ωn+1Σ∞ΣJn → ΩΩ∞Σn+1Ωn+1ΣΣ∞ Jn

→ ΩΩ∞Σn+1ΩnΣ∞ Jn → ΩΩ∞Σn+1E→ Ω∞ΩΣn+1E→ Ω∞ΣnE

In the above sequence, the map ΩΩ∞Σn+1ΩnΣ∞ Jn → ΩΩ∞Σn+1E is given by ΩΩ∞Σn+1kn, so by
naturality, we can move this use of kn to the end. The above chain is then equal to the composite

Jn → ΩΣJn → ΩΩ∞Σn+1Ωn+1Σ∞ΣJn → ΩΩ∞Σn+1Ωn+1ΣΣ∞ Jn

→ ΩΩ∞Σn+1ΩnΣ∞ Jn → Ω∞ΩΣn+1ΩnΣ∞ Jn → Ω∞ΣnΩnΣ∞ Jn → Ω∞ΣnE

For this to be the transpose of kn, what we need is for the composite Jn → Ω∞ΣnΩnΣ∞ Jn, leaving
off the last map, is equal to the unit. And it is, by liberal use of the triangle inequalities, as every
map in the string is either unit/counit or an equality of composites in a system of commuting
adjunctions.

Having established this adjunction, we introduce the following axiom, which identifies the
synthetic and analytic spectra:

Axiom N. The adjunction between Spec and SeqSpec is a dull adjoint equivalence, i.e. the map LRE→⋆ E
is an equivalence and Mor(J, RLJ) is a level-wise equivalence.

As an application, we show that this axiom fixes the stable homotopy groups of S, in the sense
of Definition 2.1.28, to be the actual stable homotopy groups of the ordinary spheres.

Remark 2.3.12. The composite right adjoint Spec → SeqSpec → SeqPreSpec → Space⋆ in the
diagram at the beginning of this section is (RE)0 ≡ Ω∞E. So the composite adjunction must be
equal to the adjunction

Space⋆ Spec

Σ∞

Ω∞

that we already have from Proposition 2.1.31.

Definition 2.3.13. Let QX :≡ Ω∞Σ∞X.
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Lemma {S, N} 2.3.14.

QX ≃ colimk ΩkΣkX

Proof. By Remark 2.3.12, we have QX ≡ Ω∞Σ∞X ≃ 0th(ι(R(L(spec(susp(X)))))). Axiom N
allows us to chop the L ⊣ R adjunction off this roundtrip on Space⋆, and ι is just forgetful, so we
get 0th(spec(susp(X))). Then colimk ΩkΣkX is exactly the 0th type of the spectrification of the
suspension prespectrum of X.

Proposition {S, N} 2.3.15.
πs

n(S) ≃ colimk πn+k(Sk)

Proof. We will make use of some properties of sequential colimits proven in [SDR20]. Specifically,
sequential colimits commute with taking loop spaces [SDR20, Corollary 7.4] and truncations [SDR20,
Corollary 7.6], and thus calculating homotopy groups.

πs
n(S) ≡ πn(Ω∞S) (by definition)

≃ πn(Ω∞Σ∞S0) (by Remark 2.3.10)

≃ πn(colimk ΩkΣkS0) (by the Lemma 2.3.14)

≃ colimk πn(ΩkΣkS0) (sequential colimit commutes with πn)

≃ colimk πn+k(ΣkS0) (definition of π)

≃ colimk πn+k(Sk) (definition of Sn)

2.4 An Internal Six Functor Formalism

We show that any function f : X → Y between spaces induces a ‘Wirthmüller context’ between
the types over each base. This is a special case of Grothendieck’s six functor formalism, surveyed
in [FHM03]. We will see that for any space X there is a closed monoidal category Fam(X) of types
over that base, and that any function f : X → Y induces an adjoint triple

Fam(X) Fam(Y)

f!

⊥

⊥
f∗

f ∗

such that f ∗ is a monoidal closed functor.
Because we have such a context for every function of spaces, we expect the map ♮(−) : U →

Space to define an internal, weak, ‘closed monoidal ∗-bifibration’, in the sense of [Shu08, §3,
Definitions 12.1 and 13.3]. In [Sch14, §3], there is speculation on a notion of ‘linear homotopy-type
theory’ which would have semantics in such bifibrations, with the adjoint operations given by
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specialised type constructors. Our theory is more general: we can construct these adjoints internally
using the type formers so far described.

There are two equivalent ways to define the categories involved. For a space X, our preferred
way is to use the category with type of objects given by Fam(X) :≡ X → Spec. This behaves quite
nicely type-theoretically, in particular, the ‘pullback’ functors will compose strictly: g∗ ◦ f ∗ ≡
(g ◦ f )∗.

The other way to define the spectra over X is to think of every type A as living intrinsically
over the base ♮A, and defining Fib♮(X) to be all types equipped with an equivalence between their
intrinsic base and X. Some operations will be more natural to construct using one description than
the other. We will define both versions and show that they are equivalent.

We write the top colour as purple throughout this section.

2.4.1 Families of Spectra

Definition 2.4.1. For X a space, define Fam(X) :≡ X → Spec.

Definition 2.4.2. For A : Fam(X) and B : Fam(Y), a map over f : X → Y is a map h(x) : A(x) →
B( f (x)) for every x : X. Let Map f (A, B) denote the type of such maps:

Map f (A, B) :≡ ∏(x:X)A(x)→ B( f (x))

and write MapX(A, B) as a shorthand for MapidX
(A, B).

Definition 2.4.3. For m : Map f (A, B) and n : Mapg(B, C), there is n ◦m : Mapg◦ f (A, C) defined by

(n ◦m)(x) :≡ n( f (x)) ◦m(x)

2.4.2 Pullback and Pushforwards

Definition 2.4.4. For a family B : Fam(Y), the family f ∗B : Fam(X) is given by composition:

f ∗B :≡ B ◦ f

Proposition 2.4.5.
Map f (A, B) ≡ MapX(A, f ∗B)

Proof. Immediate from the definitions:

∏(x:X)A(x)→ B( f (x)) ≡ ∏(x:X)A(x)→ ( f ∗B)(x)

Proposition 2.4.6. Pullback is functorial definitionally, in that f ∗g∗B ≡ (g ◦ f )∗B

Proof. Immediate by associativity of function composition.

The functor f ∗ has both left and right adjoint. First the right adjoint:
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Definition 2.4.7. For A : Fam(X), define f ∗A : Fam(Y) by

f ∗A(y) :≡ ∏((x,p):fib f (y))A(x)

Lemma 2.4.8. This defines a family of spectra on Y.

Proof. fib f (y) is a space, so by Theorem 1.1.24,

♮
(

∏((x,p):fib f (y))A(x)
)
≃ ∏((x,p):fib f (y))♮A(x)

≃ ∏((x,p):fib f (y))1

≃ 1

Remark 2.4.9. If π : X → 1 denotes the unique map, then for any A : Fib♮(X), we can compute

(π∗A)(⋆) ≡ ∏((x,p):fibπ(⋆))A(x) ≃ ∏(x:X)A(x)

This is the ‘spectrum of sections’ of A, the twisted cohomology of the space X with coefficients in
A.

Theorem 2.4.10. There is an adjunction

MapX( f ∗B, A) ≃ MapY(B, f ∗A)

Proof.

MapX( f ∗B, A) ≡ ∏(x:X)B( f (x))→ A(x)

≃ ∏((y,(x,p)):∑(y:Y) fib f (y))B(y)→ A(x) ([HoTTBook, Lemma 4.8.2])

≃ ∏(y:Y)∏((x,p):fib f (y))B(y)→ A(x) (Currying)

≃ ∏(y:Y)

(
B(y)→ ∏((x,p):fib f (y))A(x)

)
(Symmetry)

≡ MapY(B, f ∗A)

Now the left-adjoint to f ∗. The reader might expect a definition like

f
!
A(y) :

?≡ ∑((x,p):fib f (y))A(x)

but the right side is not a spectrum unless fib f (y) happens to be contractible. We have to make a
correction:
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Definition 2.4.11. For A : Fam(X), define

zerosA(y) : fib f (y)→ ∑((x,p):fib f (y))A(x)

zerosA(y)(x, p) :≡ (x, p, ⋆A(x))

And then for each y : Y, define f
!
A(y) as the cofibre

fib f (y) ∑((x,p):fib f (y)) A(x)

1 f
!
A(y)

zerosA(y)

⌜

This definition can only be made for dull A, so that we have access to a canonical point
⋆A(x) : A(x) for each x.

Lemma 2.4.12. This pushout defines a spectrum for each y.

Proof. ♮ commutes with pushouts (Proposition 1.1.29) and Σ-types (Proposition 1.1.18). The map
zerosA(y) becomes an equivalence under the action of ♮ because A(x) is a spectrum, and then the
pushout of an equivalence is an equivalence giving 1 ≃ ♮ f

!
A(y).

Remark 2.4.13. Note that if X is a space and π : X → 1 is the unique map, then π!π
⋆(S) ≃ Σ∞

+X.

Proposition 2.4.14. ♮MapY( f
!
A, B) ≃ ♮Map f (A, B)

Proof. Fix y : Y. Then by the universal property of pushouts, we have that functions f
!
A(y)→ B(y)

are equivalent to triples

i :
(

∑((x,p):fib f (y))A(x)
)
→ B(y)

j : B(y)

H : ∏((x,p):fib f (y))i((x, p), ⋆A(x)) = j

and so dull functions ♮( f
!
A(y)→ B(y)) correspond to dull triples

i :
(

∑((x,p):fib f (y))A(x)
)
→ B(y)

j : B(y)

H : ∏((x,p):fib f (y))i((x, p), ⋆A(x)) = j

Now j is a dull point of a spectrum, and H is a dull family of paths in a spectrum, so in fact j and H
contain no data at all, and

♮( f
!
A(y)→ B(y)) ≃ ♮

((
∑((x,p):fib f (y))A(x)

)
→ B(y)

)
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Then

♮MapY( f
!
A, B) ≡ ♮∏(y:Y)

(
f

!
A(y)→ B(y)

)
≃ ∏(y:Y)♮

(
f

!
A(y)→ B(y)

)
≃ ∏(y:Y)♮

((
∑((x,p):fib f (y))A(x)

)
→ B(y)

)
≃ ♮∏(y:Y)

(
∑((x,p):fib f (y))A(x)

)
→ B(y)

≃ ♮
(

∏((y,(x,p)):∑(y:Y) fib f (y))A(x)→ B(y)
)

≃ ♮
(

∏(x:X)A(x)→ B( f (x))
)

≡ ♮Map f (A, B)

Corollary 2.4.15. ♮MapY( f
!
A, B) ≃ ♮MapX(A, f ∗B)

Corollary 2.4.16. Spec is ‘externally’ a reflective subcategory of U , in that, for any A : U and E : Spec,

♮(π! A→ E) ≃ ♮(A→ E)

where π : ♮A→ 1 denotes the unique map.

Proof. ♮(π! A→ E) ≃ ♮Map1(π! A, E) ≃ ♮Mapπ(A, E) ≃ ♮(A→ E)

2.4.3 Tensor and Hom

First, there is an ‘internal’ tensor product and hom on each Fam(X).

Definition 2.4.17. For A : Fam(X) and A′ : Fam(X), define A⊗X A′ : Fam(X) by applying the
actual ⊗-type former pointwise:

(A⊗X A′)(x) :≡ A(x)⊗ A′(x)

which defines a family of spectra by Proposition 1.3.21. The unit of this operation SX is given by
SX(x) :≡ S.

The internal hom on Fam(X) is similarly calculated pointwise:

Definition {C} 2.4.18. For A : Fam(X) and A′ : Fam(X), define

(A ⊸X A′)(x) :≡ A(x) ⊸ A′(x)

which is a family of spectra by Axiom C.

Proposition {C} 2.4.19. There is an adjunction

♮MapX(A⊗X A′, A′′) ≃ ♮MapX(A, A′ ⊸X A′′)
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Proof. Follows quickly from Proposition 1.5.9.

Proposition 2.4.20. The f ∗ operation is strong closed monoidal with respect to the internal tensor and hom.

Proof. Because the constructions are done pointwise, they commute definitionally with f ∗.

There is also an ‘external’ tensor, which is more like how our⊗-type former behaves intrinsically:

Definition 2.4.21. For A : Fam(X) and B : Fam(Y), define A⊗ B : Fam(X×Y) by

(A⊗ B)(x, y) :≡ A(x)⊗ B(y)

Proposition 2.4.22. Given maps f : X → Y and g : X′ → Y′ between spaces, and types B : Fam(Y) and
B′ : Fam(Y′) respectively,

( f × g)∗(B⊗ B′) = f ∗B⊗ g∗B′

Proof.

( f × g)∗(B⊗ B′)(x, x′) ≡ (B⊗ B′)( f (x), g(x′))

≡ B( f (x))⊗ B′(g(x′))

≡ f ∗B(x)⊗ g∗B′(x′)

≡ ( f ∗B⊗ g∗B′)(x, x′)

We can also wonder whether this external tensor product has a right adjoint, an operation with
the following shape: for B : Fam(Y) and C : Fam(X×Y) there should be B ▷ C : Fam(X). This is
also easy to construct:

Definition {C} 2.4.23. For dull B : Fam(Y) and C : Fam(X×Y), define B ▷ C : Fam(X) by

(B ▷ C)(x) :≡ ∏(y:Y)B(y) ⊸ C(x, y)

Again, we need to assume Axiom C for each fibre to be a spectrum.

Proposition {C} 2.4.24. There is a dull adjunction

♮MapX×Y(A⊗ B, C) ≃ ♮MapX(A, B ▷ C)
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Proof.

♮MapX×Y(A⊗ B, C) ≡ ♮
(

∏((x,y):X×Y)(A⊗ B)(x, y)→ C(x, y)
)

≃ ♮
(

∏((x,y):X×Y)A(x)⊗ B(y)→ C(x, y)
)

≃ ∏((x,y):X×Y)♮
(

A(x)⊗ B(y)→ C(x, y)
)

(Theorem 1.1.24)

≃ ∏((x,y):X×Y)♮
(

A(x)→ (B(y) ⊸ C(x, y))
)

(Proposition 1.5.9)

≃ ♮
(

∏((x,y):X×Y)A(x)→ (B(y) ⊸ C(x, y))
)

(Theorem 1.1.24 again)

≃ ♮
(

∏(x:X)A(x)→ (∏(y:Y)B(y) ⊸ C(x, y))
)

(Currying)

≡ ♮
(

∏(x:X)A(x)→ (B ▷ C)(x)
)

≃ ♮MapX(A, B ▷ C)

Proposition {C} 2.4.25. The internal and external operations are related by

A⊗X A′ ≡ ∆X
∗(A⊗ A′)

SX ≡ πX
∗(S)

A ⊸X A′ ≃ A ▷ (∆X)∗A′

where πX : X → 1 and ∆X : X → X× X.

Proof. The first two follow immediately from expanding definitions, and the third by uniqueness
of adjoints, seeing that

♮MapX(A⊗X A′, A′′) ≡ ♮MapX(∆X
∗(A⊗ A′), A′′)

≃ ♮MapX×X(A⊗ A′, (∆X)∗A′′)

≃ ♮MapX(A, A ▷ (∆X)∗A′′)

2.4.4 Types with Fixed Base

Rather than considering functions X → Spec, instead we can use the fact that every type A is
intrinsically a family of spectra over the space ♮A via Corollary 2.1.6.

Definition 2.4.26. Let X be a dull space. A type with base X is a type A with an equivalence
v : ♮A ≃ X. The type of types with base X is written Fib♮(X).

The type (♮A ≃ X) is a space because it is the type of equivalence between two spaces, and so
we may assume the provided equivalence v is dull.

Any type A can be paired with the identity equivalence ♮A ≃ ♮A to give (A, id♮A) : Fib♮(♮A).
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Definition 2.4.27. For any (A, w) : Fib♮(X) there are functions baseA : A→ X and zeroA : X → A
given by

baseA(a) :≡ w(a♮)

zeroA(x) :≡ (w−1(x))♮

Note that the codomain of zero is only A, not the original A.

Proposition 2.4.28. There is an equivalence ϕ : Fam(X)→ Fib♮(X) via the forward and reverse assign-
ments

ϕ(E) :≡
(

∑(x:X)E(x), λ((x, e)♮).x
)

ϕ−1(A, v) :≡ λx.Av−1(x)

Proof. This equivalence was constructed in the process of proving Proposition 2.2.20.

Definition 2.4.29. Given (A, v) : Fib♮(X) and (B, w) : Fib♮(Y), a map over f : X → Y is a map
h : A→ B together with a witness H that

♮A ♮B

X Y

♮h

v w

f

commutes, where ♮h is defined by Definition 1.1.5. The type of such pairs (h, H) is denoted
Map f (A, B), so

Map f (A, B) :≡ ∑(h:A→B)w ◦ ♮h ∼ f ◦ v

The case of f = idX is written MapX(A, B).

There is now a dictionary translating between the operations on Fam(X) and the same opera-
tions in terms of Fib♮(X).

Definition 2.4.30. For B : Fib♮(Y), the type f ∗B : Fib♮(X) is defined to be the pullback

f ∗B B

X Y

⌟
baseB

f

To see that this is a type over X, note that the map on the right becomes an equivalence under
the functorial action of ♮. Because ♮ preserves pullbacks, the induced map ♮( f ∗B) → ♮X is an
equivalence.

133



Definition 2.4.31. For a type A : Fib♮(X), the type f ∗A : Fib♮(Y) is defined by

f ∗A :≡ ∑(y:Y)∏((x,p):fib f (y))Ax

Definition 2.4.32. For a dull type A : Fib♮(X), the type f
!
A is the pushout

X Y

A f
!
A

zeroA

f

⌜

Because ♮ preserves pushouts and the map on the left becomes an equivalence under the action
of ♮, applying ♮ to the map Y → f

!
A also yields an equivalence. We use this map as our witness

that f
!
A is a type over Y.

Definition 2.4.33. Given A : Fib♮(X) and B : Fib♮(Y) define A⊗ B : Fib♮(X×Y) via the equivalence
♮(A⊗ B) ≃ ♮A× ♮B ≃ X×Y of Proposition 1.3.21.

This time, the type A⊗ B really is just the ⊗-type former applied directly to the inputs.

Definition {C} 2.4.34. For dull B : Fib♮(Y) and C : Fib♮(X×Y), define B ▷ C : Fib♮(X) by

B ▷ C :≡ ∑(x:X)(B ⊸ C)(λy.(x,y))

Definition {C} 2.4.35. For dull A : Fib♮(X) and A′ : Fib♮(X′), define A ⊸X A′ : Fib♮(X) by

A ⊸X A′ :≡ ∑(x:X)Ax ⊸ A′x

Theorem {C} 2.4.36. Each of f ∗, f∗, f!,⊗(−),⊸(−) on Fam((−)) and Fib♮((−)) commutes with the
equivalences ϕ(−) : Fam(−)→ Fib♮(−).

For most of the operations this is immediate. The most interesting is f!:

Proposition 2.4.37.

ϕY( f
!
A) ≃ f

!
(ϕX(A))

Proof. Starting with a type A over X, we have to calculate the fibre of f
!
A→ Y over a point y : Y.

Consider the diagram

fib f (y)

fib f ◦base(y) X 1

A 1 Y

Y
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where all the vertical squares are pullbacks: the front-left and back-right by the definition of fib,
and the back-left by the pasting Lemma applied to

fib f ◦base◦zero(y) fib f ◦base(y) 1

X A Yzero f ◦base

noting that f ◦ base ◦ zero ≡ f . Now by descent for pushouts (Theorem 2.2.7) applied to the cube,
the diagram

cofib(fib f (y)→ fib f ◦base(y)) 1

f
!
A Y

is a pullback. And

fib f ◦base(y) ≃ ∑((x,p):fib f (y))Ax

so the fibre over y may be calculated as the cofibre of the map

cofib
(
fib f (y)→ ∑((x,p):fib f (y))Ax

)
as required.

2.4.5 Working Fibrationally

We can rephrase some of the above definitions to be more yet more type-theoretically pleasant. A
family of spectra can be described ‘fibrationally’, interpreting a term A : ♮Spec in context Γ as a
parameterised spectrum over ‘♮Γ’. From this perspective, a map of spaces X → ‘♮Γ’ is specified by
a term X : Space in context Γ.

The downside of this approach is that we can no longer get a handle on the base space: it
is always the base space of the ambient context. Internally, A : ♮Spec looks like a single (dull)
spectrum, and it is only after interpretation into the semantics that its parameterisation over the
context becomes visible. In particular, it is impossible to express the external operations ⊗ and ▷ in
this style (Definitions 2.4.21 and 2.4.23), because that would require as inputs types A : ♮Spec and
B : ♮Spec lying in ‘disjoint contexts’, something we have no ability to specify internally.

Weakening the ambient context will change base space without any visible difference in the
term. Such a weakening with X : Space is exactly the operation that corresponds to X∗, where X
denotes the projection (♮Γ, X)→ ♮Γ. In the case that X is a closed type, this is pullback along the
projection X× ♮Γ→ ♮Γ, which aligns with the usual trick of conflating an object X with the map
X → 1.
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The upside of this approach is that the adjoints to this weakening are now exceptionally simple
to describe. Let us write X! and X∗ for the adjoints to weakening with X.

X! : (X → ♮Spec)→ ♮Spec

X!(A) :≡ cofib
(

X → ∑(x:X)A(x)♮
)♮

X∗ : (X → ♮Spec)→ ♮Spec

X∗(A) :≡
(

∏(x:X)A(x)♮
)♮

and the linear operation use the type formers directly: if A, B : ♮Spec, then

⊗̃ : ♮Spec× ♮Spec→ ♮Spec

A ⊗̃ B :≡
(

A♮ ⊗ B♮

)♮
⊸̃ : ♮Spec× ♮Spec→ ♮Spec

A ⊸̃ B :≡
(

A♮ ⊸ B♮

)♮
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Chapter 3

Metatheory

We now turn to metatheoretic aspects of our type theory.

• Section 3.1 justifies some of the choices we have made in how the type theory is designed,
and discusses some possible improvements.

• Section 3.2 describes the proof that the various operations we have used in the theory are
admissible. The overall structure of the proof is typical — a giant mutual induction on
derivations — but some of the tricks used to work with the palettes changing through a
derivation are novel.

Further details are given in Appendix B

• In Section 3.3 we describe a toy model of our type theory which is simple enough to be
described internally: type-indexed families of pointed types.

3.1 On the Design of the Type Theory

The author readily admits that the rules for palettes and splits are a little odd. In this section I will
try to justify some of the design choices, and explain why some ‘obvious’ simplifications fail.

3.1.1 Palettes and Slices.

Comma, Tensor, and Colour Labels. In the palettes that appear in the derivations of terms, there
is an asymmetry between the comma palette constructor and the⊗ palette constructor: the children
of a (possibly iterated) ⊗ palette all begin with a colour label, but the children of comma palette
never do. For example, we never encounter a palette with the shape (l ≺ ΦL), (r ≺ ΦR). We can get
away with this because both weakening and contraction for comma mean we never have to refer to
the two sides separately. Thinking semantically, any construction that only uses one side of the
comma can be weakened to the palette containing both by precomposing with the projection, and
any construction that uses ‘functoriality’ of comma does not need to divide the palette between the
two sides: one can instead apply functoriality and precompose with the diagonal map. This is no
different to how contexts and variables work in ordinary (cartesian) type theory: the context never
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shrinks as you move up a derivation, and at the leaves you may project a variable from anywhere
in the context.

For the same reason, we do not have a rule that constructs a slice Φ, Φ′ ⊢ s, s′ slice where
Φ ⊢ s slice and Φ′ ⊢ s′ slice. Without loss of generality one can instead use the colour label
immediately above the Φ, Φ′.

On the other hand, we should not arrange the rules for palettes such so that the two sides of a
⊗ always have a label immediately as the first child on either side, because associativity of ⊗ would
not preserve this property. For example, reassociating

(p ≺ r⊗ b)⊗ y

to

r⊗ (b⊗ y)

leaves the right side of the outermost ⊗ without a label.
This would affect the syntax for slices. Anywhere that a slice implies such a reassociation of the

palette, that slice would need to bind a new colour label. This would complicate the syntax for slices
considerably. Additionally, whenever one replaces a spot in a palette with some other subpalette,
one would need to make sure that this does not break the invariant: whether a replacement is valid
will depend on the surrounding context of the spot in an irritating way.

Silent Weakening. For this type theory to be usable informally, it is crucial that cartesian weaken-
ing of the palette is invisible on the raw syntax of terms. This kind of weakening occurs whenever
we use pattern matching: in a term let p = s in c : C[s/z], the type of the term c : C[p/z] has been
weakened to include the new palette bound by the pattern p. It would be extremely confusing
if this weakening were explicit throughout the type C, even places that have no relation to the
variable z.

Non-Democratic Contexts. Our rules for palettes allow us to form palettes that can’t possibly
appear in the derivation of a closed term, for example, r⊗ (b, b′). Similarly, because of our slick
context extension rule it is possible to form contexts that do not occur in the derivation of a closed
term, even when the palette on its own is an ‘ordinary’ one. For example, nothing prevents us from
sandwiching colours in the following sense:

p ≺ r⊗ b | xr : A, yb : B, zr : C ctx

There is no binder that can produce that final context extension with z, nor can it be arrived at by
filtering to a slice: the context before the filtering would also have to be sandwiched in this way.

This fact causes another departure from what we are used to from MLTT: in ordinary dependent
type theory, any context or context extension can be packed into an iterated Σ-type. The same is
not true here: the above sandwiched colours prevent any sensible packing of y and z into a type
together.

We note that the entire context can be described (up to equivalence) as a type. The main obstacle
is the possible dependence of C on y, which prevents us from using symmetry to resolve the
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sandwiched colours. We can use Proposition 1.3.13 to break this dependency and then apply
symmetry.

Contexts that may be packed into a type are sometimes called democratic [CD14], so to sum-
marise, not all contexts are democratic in our theory, but all contexts appearing in the derivation of
a closed term are democratic. Any telescope formed by using a pattern match is also democratic
over the context.

3.1.2 The Top Colour

We always need some method of referring to the entire ambient context, so that variables bound by
the ordinary type formers have a colour to be labelled by. In our theory we maintain the invariant
that the palette of any term has a label at the top. The downside of this approach is that we need to
know the name of the top colour to determine whether even a closed term is well-typed; this top
colour name is not stored in the syntax of a term.

There is another option: we could use a distinguished symbol to refer to the ‘top colour’, say,
T. This would solve the above issue, and have some other pleasant effects: we no longer need
the ‘recolouring’ operation in ⊗-INTRO and ⊸-ELIM, for example. But there are some unexpected
knock-on effects which made us not pursue this.

• When going under a hom-binder, the previously-unnamed top colour T is assigned a name c.
This does not only affect the type of the consequent, but also all types in the context where
T was previously mentioned. Worse, when later restricting to the slice c (say in a use of
⊗-INTRO), every such occurrence of c has to be restored to an occurrence of T.

• There is no reason that this new name has to be consistent between different hom-binders,
leading to an unpleasant situation where variables that have access to the same colours are
labelled with different colours themselves.

• The combination of the unitors and the 1 slice can cause complications in niche situations.
For example, we are able to form the term a ⊗T ∅i

(b ⊗1 1 c). If later (due to pattern matching
on this term) we have to perform the substitution

(x ⊗l⊗m r y)[T/l, 1/m, 1/r | a/x, b/y]

then we are in trouble: the slice on the left should be T⊗ 1, and now we have to determine
the meaning of restricting to this slice. We cannot continue to use T as the label, because that
location in the palette is no longer at the top. And so any unitor slice would have to bind
a new colour label to use in place of T in just this case, and restricting a context to a slice
would also need to handle this case specially. The reader can imagine that there is a resulting
explosion of special cases to consider in all the definitions and proofs of the admissible rules.

3.1.3 The Unit

Our rules for splits allow the following split to be formed:

p ≺ r⊗ b ⊢ (r⊗ b)⊠∅ presplit
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This might seem redundant: why not force a unitor split to use the top colour label, as in p⊠∅?
The problem arises when defining substitution on raw syntax. If a substitution is built using the
unitor split, then applying that substitution to a slice may yield a slice of the form r⊗ b. On raw
syntax, there is no way to know that this slice should be replaced with p on its own.

The induction principle for S on its own is not so useful. The only way to use it is in S-INTRO,
in which case one may as well η-contract and use the term of S that you started with. We include
this induction principle so as to not break the analogy with ⊗-types.

The judgemental unit itself is necessary even if the theory did not have this induction principle.
Without the judgemental unit, the unitor splits would have to bind an ordinary variable. This mixes
the syntax of palettes and contexts in an uncomfortable way and would complicate the metatheory.

It may be possible to extend the type theory to make judgemental units more useful. For
example, it would be convenient when working in a palette such as

(r ≺ ∅i)⊗ (b ≺ ∅j) palette,

to be able to write ◊ij : S. As it stands one has to asymmetrically use the left or right unitor map
(defined via pattern match).

A further extension would be a new term former J U whenever there is a split sL ⊠ sR split

such that sL proves J and sR contains a unit. The hope would be that this term former could be
made to commute with commute judgementally with the other term formers, which would make
arguments that manipulate S more convenient. This term former would be stuck on variables,
which is unproblematic, but we run into an issue when trying to commute it with ⊗-INTRO: there
is no way to know which side U should be pushed into, and it cannot be pushed into both. The
split judgement would need the ability to ‘consume’ units of this form. This may be possible but
again leads to an explosion of special cases.

3.2 Admissible Rules

The rules for the type theory given in this thesis can be applied to various precise formulations of
type theory. For example, if the starting Martin-Löf type theory is thought of algebraically as an
essentially algebraic theory or quotient inductive-inductive type [ACDKN18], then we could make
♮Γ a new context former, a a new term former, the unit a new explicit substitution, and the rules
defining these operations new judgemental equalities. The bunched structure is more interesting,
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but could be presented using a telescope judgement as in the following:

· ctx
Γ ⊢ A type

Γ ⊢ A tele

Γ ctx

♮Γ ctx

Γ ⊢ Ω tele

♮Γ ⊢ ♮Ω tele

Γ ⊢ Ω tele

Γ, Ω ctx

Γ ⊢ Ω tele Γ, Ω ⊢ Ω′ tele

Γ ⊢ Ω, Ω′ tele

♮Γ ⊢ Ω tele

Γ⊗Ω ctx

♮Γ ⊢ Ω tele ♮(♮Γ, Ω) ⊢ Ω′ tele

♮Γ ⊢ Ω⊗Ω′ tele

One would then add a plethora of equations asserting the correct relationships between these
context constructors.

However, this kind of algebraic formulation does not immediately capture some important
aspects of our syntax. The first is that the ♮Γ and a are definable in terms of marked context
extension and marked variables — this would need to be recovered as part of a canonicity proof.
The second is that the unit is “silent,” i.e. it does not change the raw proof term — in the algebraic
style, it would be made explicit analogously to weakening. But perhaps the most inconvenient
aspect is that the palette and slice syntax is lost entirely. When applying ⊗-INTRO or ⊸-ELIM, one
would need to apply a possibly complicated stuck substitution to the context to massage it into the
desired split Γ⊗Ω ctx.

The simplest way to make these observations formal is to adopt a more traditional syntax,
where the subjects of a judgement Φ | Γ ⊢ a : A are a raw syntax context Φ | Γ, a raw syntax term a,
and a raw syntax type A. These weak invariants “break the loop” so that the typing rules can be
defined prior to the admissible rules — otherwise, one requires the admissible rules to know that
the presuppositions of the judgements are satisfied. For example, a premise of t ≺ Φ, Γ, x : A ctx is
t | Γ ⊢ A type, but Γ ctx only follows from an admissible rule.

3.2.1 Official Rules

When making rules in this style precise, there are some somewhat arbitrary choices about the
presuppositions of a judgement. For example, a derivation of t ≺ Φ | Γ ⊢ a : A might

1. presuppose that t ≺ Φ | Γ is well-formed, i.e. the subject is really a raw context t ≺ Φ |
Γ rawctx such that there is a derivation t ≺ Φ | Γ ctx.

2. require t ≺ Φ | Γ ctx at each step of the derivation of a : A.

3. neither of the above, i.e. formally one can make derivations of t ≺ Φ | Γ ⊢ a : A for an ill-
formed context Γ, but we generally will only be interested in derivations when t ≺ Φ | Γ ctx.

The first has the same problem as the algebraic syntax — it requires the admissible rules to be
mutual with the basic ones — and the second is a bit far from an implementation, which inductively
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maintains the invariant that the context is well-formed without repeatedly re-checking it, so we
follow the third option for contexts in all judgements. However, for terms, the rules will ensure that
the type is well-formed, and for equality rules, the rules will ensure that the terms are well-typed:
we can prove Lemmas of the form

• If Γ ctx and Γ ⊢ a : A then Γ ⊢ A type.

• If Γ ctx and Γ ⊢ a ≡ a′ : A then Γ ⊢ a : A and Γ ⊢ a′ : A.

This is because, following [Str91; Hof97]’s approach to categorical semantics and initiality, we
officially adopt a fully annotated term syntax, where every inference rule has a direct typing
premise for each term/type metavariable appearing in the rule. (Of course, this is also a bit far
from an implementation.) Together with the admissible rules, these premises will be enough to
ensure that the types in a typing judgement and terms in an equality judgement are well-formed.
De Boer, Brunerie, Lumsdaine and Mörtberg (see [Boe20]) have given a fully mechanised initiality
proof for roughly this style of presentation, though we treat variable binding informally rather than
using de Bruijn indices.

For the judgements for well-formed contexts, terms and types, we do presuppose that the
palette is well formed: the operations on palettes, slices and splits may be defined prior to any
contact with contexts, terms and types. The structure of palettes is sufficiently simple that there is
no need to “break the loop” here; and palettes do not appear in terms or types, only the raw syntax
of slices.

3.2.2 Operations on Raw Syntax

The admissible operations on contexts and terms are defined on raw syntax (prior to typing). This
accords with the way we use these operations when working informally: we do not want to have
to think about the exact structure of a derivation as we apply these operations to terms.

We use the following judgements for raw terms:

• ϕ denotes a palette scope, which is an unstructured list of colour names and unit names.

• ϕ ⊢ s rawpreslice denotes a raw preslice in scope ϕ, so list with entries either a colour from the
scope ϕ or the symbol 1.

• ϕ ⊢ s rawslice denotes a raw slice in the scope ϕ, which is a raw preslice that may bind a top
colour.

• ϕ | γ ⊢ a rawterm denotes a raw term in the palette scope ϕ and scope γ. We think of raw
syntax as being intrinsically scoped, so a raw term a is judged relative to a scope γ consisting
of variable names only, with no associated types or marks.

We do not distinguish between ordinary and marked variables in scopes γ, nor do we record
a colour label for each variable.

• ϕ | Γ rawctx denotes a raw context consisting of a list of variables with a raw term as a ‘type’
of each. Each variable is unmarked or marked. Unmarked variables are annotated with a
colour name from the scope ϕ. Marked variables bind a fresh colour name that they use as
their ‘top colour’.
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• ϕ | γ ⊢ ψ | ∆ rawext similarly denotes a raw context extension in the scope ϕ | γ with marks
and colours on the variables. This extension ∆ is also permitted to use the new colours in
the scope ψ. This judgement serves double duty: both well-typed context extensions and
context telescopes have underlying raw extensions of this type. (We touched on the difference
between these notions in Remark 1.6.6.)

• ϕ ⊢ κ : ψ denotes a palette substitution, as raw syntax this is a derivation of a palette
substitution where the slices that appear do not need to be well-formed.

• ϕ | γ ⊢ (κ | θ) : ψ | ω denotes a telescope substitution, so θ is a list of raw terms in scope
ϕ | γ.

The complete list of operations on raw syntax that we need are as follows:

• Extracting the top colour from a slice ⌜s⌝.

• Extracting the underlying preslice u(s).

• Recolouring J c↔d of slices, contexts, telescopes, terms and types.

• Marking J mΦ of slices.

• Marking J mΦ|Γ of contexts, telescopes, terms and types.

• Marking Γ of contexts.

• Filtering Γs of contexts and telescopes.

• Substitution J [κ] of slices.

• Substitution J [κ | θ] of telescopes, terms and types.

• Tensor merging J [(t ≺ sL ⊠ sR/t′)] of slices, telescopes, terms and types.

The shapes of these operations on raw syntax are given in Figure 3.1. We use 𝒿 to stand in for
one of a raw telescope or a raw term.

When we apply these operations to well-typed telescopes and terms, we will just write, for
example, ∆mΓ and amΓ, letting Γ represent its underlying list of variables.

The actual definitions are given in Section A.4; the only definition that is not entirely obvious is
slice substitution, which stops when we reach the first occurrence of the colour as its own slice.

Many of the equations relating these operations now hold on the level of raw syntax. For
example,

Lemma 3.2.1. Marking is idempotent on the level of raw syntax.

• If t, ϕ | Γ rawctx then Γ ≡α Γ

• If t, ϕ | Γ rawctx and t, ϕ | γ ⊢ ψ | ∆ rawext then Γ, ∆ ≡α Γ, ∆mϕ|γ

• If ϕ, ϕ′, ϕ′′ | γ, γ′ ⊢ ψ | ∆ rawext then (∆mϕ|γ)
m(ϕ,ϕ′|γ,γ′) ≡α ∆m(ϕ,ϕ′|γ,γ′) ≡α (∆m(ϕ,ϕ′|γ,γ′))

mϕ′|γ′
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Slice operations:

Φ palette ϕ ⊢ s rawslice

Φs ⊢ ⌜s⌝ colour
−−−−−−−−−−−−−−

ϕ ⊢ s rawslice

ϕ ⊢ u(s) rawpreslice
−−−−−−−−−−

Marking:

t, ϕ | Γ rawctx

t | Γ rawctx
−−−−−−−

t, ϕ | γ ⊢ ψ | ∆ rawext

t | γ ⊢ · | ∆ rawext
−−−−−−−−−−−

ϕ, ϕ′ ⊢ s rawslice

ϕ′ ⊢ smϕ rawslice
−−−−−−−−−

ψ, ϕ, ψ′ | γ, γ′ ⊢ ∆ rawext

ψ, ψ′ | γ, γ′ ⊢ ∆mϕ|γ rawext
−−−−−−−−−−−−−−

ψ, ϕ, ψ′ | γ, γ′ ⊢ a rawterm

ψ, ψ′ | γ, γ′ ⊢ amϕ|γ rawterm
−−−−−−−−−−−−−−−

Tinting:

Φ palette ϕ ⊢ s rawslice ϕ | Γ rawctx

ϕ | Γs rawctx
−−−−−−−−−−−−−−−−−−−−−−−

Recolouring:

ϕ, c, ϕ′ | γ ⊢ 𝒿

ϕ, d, ϕ′ | γ ⊢ 𝒿d↔c
−−−−−−−−−−

Telescope substitution:

ϕ ⊢ κ : ψ ϕ, ψ, ϕ′ ⊢ s rawpreslice

ϕ, ϕ′ ⊢ s[κ] rawpreslice
−−−−−−−−−−−−−−−−−−−

ϕ ⊢ κ : ψ ϕ, ψ, ϕ′ ⊢ s rawslice

ϕ, ϕ′ ⊢ s[κ] rawslice
−−−−−−−−−−−−−−−−−

ϕ | γ ⊢ (κ | θ) : ψ | ω t ∈ ϕ, ψ, ϕ′ ϕ, ψ, ϕ′ | γ, ω, γ′ ⊢ 𝒿

ϕ, ϕ′ | γ, γ′ ⊢ 𝒿[κ | θ]att
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Slice substitution:

ϕ ⊢ t rawslice ϕ, c, ϕ′ | γ ⊢ 𝒿

ϕ, ϕ′ | γ ⊢ 𝒿[(t/c)] rawslice
−−−−−−−−−−−−−−−−−

Figure 3.1: Operations on Raw Syntax
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• If ϕ, ψ, ψ′ ⊢ s rawpreslice then (smϕ)
m(ϕ,ψ) ≡α am(ϕ,ψ) ≡α (am(ϕ,ψ))

mϕ

• If ϕ, ψ, ψ′ ⊢ s rawpreslice or ϕ, ψ, ψ′ ⊢ s rawslice then (smϕ)
m(ϕ,ψ) ≡α sm(ϕ,ψ) ≡α (sm(ϕ,ψ))

mϕ

• If ϕ, ψ, ψ′ | γ, δ ⊢ a rawterm then (amϕ|γ)
m(ϕ,ψ|γ,δ) ≡α am(ϕ,ψ|γ,δ) ≡α (am(ϕ,ψ|γ,δ))

mϕ|γ

Proof. Induction on the structure of the judgement.
For preslices, smϕ is calculated by replacing any colour in ϕ with 1, doing so twice has no

additional effect. For slices, the bound colour is not affected by the marking operation and so
equality follows by the equation for preslices.

For terms, variable cases are clear, as marked variables always remain marked, and unmarked
variable become marked iff they are in γ, γ′. The remaining cases are immediate by induction.

3.2.3 Proof Ideas

We give a general overview of the strategy used to prove the operations well-typed, with the
complete details in Section B.

Palette Spots. When moving through a derivation, the palette changes in various ways. To have
sufficiently general inductive hypotheses in the proofs, we need the rules to be general enough to
apply under any change that happens to the palette when moving from the conclusion to a premise.
For us, there are five possible changes:

• An ordinary binding of a single variable of the top colour (Σ-FORM, Π-FORM, Π-INTRO),

• A binding of a telescope (MATCH),

• A linear binding of a single variable (⊸-FORM, ⊸-INTRO),

• Marking of the entire context (♮-FORM, ♮-INTRO, ⊗-FORM, ⊸-FORM),

• Restriction of the context to a slice (⊗-INTRO, ⊸-ELIM).

To describe rules that are general enough, we introduce some additional judgements that
represent a particular ‘spot’ in the palette. These are similar to the ‘context holes’ one sees in other
work on bunched implication; locations in a context that can be filled with another context.

Ξ{Ξ} spot
Ξ{Φ} spot

(c ≺ Ξ){Φ} spot

Ξ{Φ} spot
(Ξ, Ξ′){Φ} spot

Ξ{Φ} spot
(Ξ′, Ξ){Φ} spot

Ξ{Φ} spot
(Ξ⊗ Ξ′){Φ} spot

Ξ{Φ} spot
(Ξ′ ⊗ Ξ){Φ} spot

We also introduce a related second (and third) kind of spot Ξ{Φ, . . . } and Ξ{t ≺ (Φ, . . . )}, that
keeps track of the enclosing label of a comma bunch: We will need this because the pattern matching
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rule places a new comma bunch below the top colour: we move from t ≺ Φ to t ≺ (Φ, Φ′).

Ξ{Ξ, . . . } spot
Ξ{Φ, . . . } spot

(Ξ, Ξ′){Φ, . . . } spot
Ξ{Φ, . . . } spot

(t ≺ Ξ){t ≺ Φ, . . . } spot

Ξ{t ≺ Φ, . . . } spot
(c ≺ Ξ){t ≺ Φ, . . . } spot

Ξ{t ≺ Φ, . . . } spot
(Ξ′, Ξ){t ≺ Φ, . . . } spot

Ξ{t ≺ Φ, . . . } spot
(Ξ, Ξ′){t ≺ Φ, . . . } spot

Ξ{t ≺ Φ, . . . } spot
(Ξ⊗ Ξ′){t ≺ Φ, . . . } spot

Ξ{t ≺ Φ, . . . } spot
(Ξ′ ⊗ Ξ){t ≺ Φ, . . . } spot

This new palette is associated ‘the wrong way’: in a palette spot Ξ{t ≺ Φ, . . . } spot, the label t
becomes distant to Φ in the underlying palette (but still ultimately with only comma bunches in
between.)

The most important operation on spots is replacing the contents of a spot with some other
palette:

Ξ{Φ} spot Ψ palette

Ξ{↓Ψ} palette
Ξ{Φ} spot Ψ palette

(Ξ{↓Ψ}){Ψ} spot

The second rule somewhat awkwardly states that, after replacing a spot in a palette, the replacement
palette is again a spot in the result.

Throughout the proofs we will use a more convenient notation for spots, writing the spot inline
at the location in the palette it appears. So, if (Ξ, Ξ′){Φ} spot is derived from Ξ{Φ} spot, we will
simply write Ξ{Φ}, Ξ′ spot, and so on.

Useful Invariants. The rules of the theory are also carefully arranged so that all typing rules
monotonically add marks as one moves from the conclusion to the premises. Additionally, the
colour label on any variable in the context is never changed by any of the rules when moving up a
derivation.

The marking operation on contexts applies the marking operation to the types, but that is the
only change to types in the context that occurs. This marking operation is identical on raw syntax
regardless of what the current top colour of the palette is. There is therefore no repeated changing
of the raw syntax of types in the context as you move up a derivation; the type is marked at most
one time.

The ‘Dispatching’ Rules. The operations on raw syntax are defined such that the data used in the
operation is left as undisturbed as possible as we traverse the term. This means that the context in
which the operation is typed can gradually drift away from the context in which the target is typed.
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For example, when applying a substitution t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω to a term t ≺ Φ, Ψ |
Γ, Ω ⊢ a : A, induction into the premises of ⊗-INTRO causes the palette and context in the term to
be restricted to some slice t ≺ Φ, Ψ ⊢ s slice, and this no longer aligns with the context of (κ | θ).

This issue is resolved by having multiple typing rules for the same operation on raw syntax, for
the various situations that can occur. In proof that each typing rule is admissible, the inductive
cases may refer to some other typing rule for the same operation, as the situation requires.

For example, the ‘headline’ substitution result is the following.

SUBST
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω t ≺ Φ, Ψ | Γ, Ω ⊢ J

t ≺ Φ | Γ ⊢ J [κ | θ]
−−−−−−−−−−−−−−−−−−−−−−−−−−

This is the rule as it is actually needed in the pattern-matching rules, as well as the ordinary
single-variable substitutions present in the rules for Σ and Π. The first step is, as usual, to allow the
judgement being substituted into to use an extension Γ′ of the context with additional variables.
For this to make sense we need the colour labels in Γ′ to not be from Ψ, because κ substitutes these
colours for an arbitrary slice of Φ, and our theory has no notion of ‘variables labelled with a slice’.
Cartesian extensions are fine as they bind variables of colour t, which is not in Ψ.

SUBST
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω t ≺ Φ, Ψ | Γ, Ω, Γ′ ⊢ J

t ≺ Φ | Γ, Γ′[κ | θ] ⊢ J [κ | θ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The next step is to allow substitution into a judgement where the palette has also been extended.
For this we use a palette spot, like so:

SUBST

s ≺ Ξ{t ≺ Φ, Ψ, . . . } spot
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω s ≺ Ξ{t ≺ Φ, Ψ, . . . } | Γ, Ω, Γ′ ⊢ J

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ, Γ′[κ | θ] ⊢ J [κ | θ]ats
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

This covers all the possible changes to the palette except one: the restriction to a slice that occurs in
⊗-INTRO and ⊸-ELIM. Here the substitution rule branches into four alternatives. The different
versions correspond to the mutually exclusive ways an arbitrary slice s ≺ Ξ ⊢ s slice might relate
to the spot Ξ{t ≺ Φ, Ψ, . . . } spot:

• s contains t, and so all of the spot. Then there is a spot Ξs{t ≺ Φ, Ψ, . . . } spot, and we can
apply the substitution rule given above.

• s has a nontrivial intersection v with Ψ. Then the result of the substitution in the conclusion
should use the colours in s[κ], which has a nontrivial intersection with Φ.

• s has a nontrivial intersection w with Φ. Then the rules for slices ensure that s uses no colours
from Ψ, and so s[κ] ≡ s. This continues to have a non-trivial intersection with Φ in the
conclusion.

• s does not intersect the spot whatsoever. Then the judgement under the slice must already be
dull with respect to Γ
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The rules corresponding to each of these possibilities are as follows.

SUBST/COD

Ψ ⊢ v presliceϵ s ≺ Ξ{Ψv} spot
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω s ≺ Ξ{Ψv} | Γ, Ωv, Γ′ ⊢ J

s ≺ Ξ{↓(t ≺ Φ)v[κ]} | Γv[κ], Γ′[κ | θ] ⊢ J [κ | θ]ats
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SUBST/DOM

Φ ⊢ w presliceϵ s ≺ Ξ{Φw} spot
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω s ≺ Ξ{Φw} | Γw, Ω, Γ′ ⊢ J

s ≺ Ξ{Φw} | Γw, Γ′[κ | θ] ⊢ J [κ | θ]ats
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SUBST/MARKED
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω s ≺ Ξ | Γ, Ω, Γ′ ⊢ J

s ≺ Ξ | Γ, Γ′[κ | θ] ⊢ J [κ | θ]ats
−−−−−−−−−−−−−−−−−−−−−−−−−−

The final ingredient is a ‘dispatch’ rule, that given a slice s ≺ Ξ ⊢ s slice in any of the above situ-
ations, chooses the appropriate rule to use to perform the substitution under that slice. Specifically,
we prove the following.

Lemma 3.2.2. Let s ≺ Ξ{(t ≺ Φ, Ψ)?} | Γ, Ω, Γ′ ctx denote one of the above four situations, so one of

s ≺ Ξ{t ≺ Φ, Ψ, . . . } | Γ, Ω, Γ′ ctx

s ≺ Ξ{Ψv} | Γ, Ωv, Γ′ ctx where Ψ ⊢ v preslice

s ≺ Ξ{Φw} | Γw, Ω, Γ′ ctx where Φ ⊢ w preslice

s ≺ Ξ | Γ, Ω, Γ′ ctx

and s ≺ Ξ{↓(t ≺ Φ)?[κ]} | Γ, Γ′[κ | θ] ctx the corresponding conclusion contexts

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ, Γ′[κ | θ] ctx

s ≺ Ξ{↓(t ≺ Φ)v[κ]} | Γv[κ], Γ′[κ | θ] ctx where Ψ ⊢ v preslice

s ≺ Ξ{Φw} | Γw, Γ′[κ | θ] ctx where Φ ⊢ w preslice

s ≺ Ξ | Γ, Γ′[κ | θ] ctx

respectively. In each case we can substitute ‘under a slice’:

SUBST/DISPATCH

s ≺ Ξ{(t ≺ Φ, Ψ)?} ⊢ s slice

t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω (s ≺ Ξ{↓(t ≺ Φ, Ψ)?})s | (Γ, Ω, Γ′)s ⊢ J

(s ≺ Ξ{↓(t ≺ Φ)?[κ]})s[κ] | (Γ, Γ′[κ | θ])s[κ] ⊢ J [κ | θ]at⌜s⌝
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Dispatching rules of a similar form are also used for the other operations, and this significantly
streamlines the cases for ⊗-INTRO and ⊸-ELIM.

The central results we have proved are the following.
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Theorem 3.2.3. Substitution is admissible.

SUBST
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω t ≺ Φ, Ψ | Γ, Ω, Γ′ ⊢ J

t ≺ Φ | Γ, Γ′[κ | θ] ⊢ J [κ | θ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Theorem 3.2.4. Marking of contexts is admissible.

MARK-CTX
t ≺ Φ | Γ ctx

t | Γ ctx
−−−−−−−

Theorem 3.2.5. Filtering of contexts is admissible.

FILTER
Φ ⊢ s slice Φ | Γ ctx

Φs | Γs ctx
−−−−−−−−−−−−−

Theorem 3.2.6. Marking is admissible.

MARK
t ≺ Φ | Γ ⊢ J

t | Γ ⊢ J
−−−−−−−−

Theorem 3.2.7. Recolouring is admissible.

RECOLOUR
t′ ≺ Φ | Γ ⊢ J

t ≺ Φ | Γt↔t′ ⊢ J t↔t′
−−−−−−−−−−−

Theorem 3.2.8. Tensor merging is admissible.

MERGE

t ≺ Φ ⊢ tL ⊠ tR split

t′ ≺ ΦtL ⊗ΦtR | ΓsL⊗sR ⊢ J

t ≺ Φ | Γ ⊢ J [(t ≺ tL ⊠ tR/t′)]
−−−−−−−−−−−−−−−−
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3.3 A Toy Model in Parameterised Pointed Types

We present a concrete interpretation of the type formers of our theory in parameterised pointed
types, which has a similar structure to parameterised spectra but is much simpler to describe.
The ∞-topos of parameterised pointed spaces is defined similarly to PSpec, but with the ∞-category
of pointed spaces S⋆ taking the place of Spec, so an object consists of a space B and a family
E : Fun(B,S⋆) of pointed spaces. In intensional type theory, we can define a weak version of this
model, where many equations that should be strict equalities (such as the β- and η-rules for the
type formers) hold only up to paths. Indeed, in this internal presentation, function types in the
theory are interpreted as functions that preserve the point only up to a path whereas we conjecture
that there is an external model in parameterised pointed spaces where functions are pointed up to
equality.

This model has been considered independently in some related work. Some aspects, including
the interpretation of the universe, were described in a talk by Buchholtz [Buc19], which discussed
simple, internally definable models of cohesion. Parameterised pointed spaces can be seen as the
category of homotopy coherent diagrams over the walking section/retraction. An ∞-presheaf Γ
on {s : 1 → 0, r : 0 → 1 | r ◦ s = id0} consists of a space Γ(0) and a space Γ(1) with a projection
Γ(1) → Γ(0) and a section Γ(0) → Γ(1). Taking the fibre of the projection, we can think of Γ(1)
as a dependent type on Γ(0), with each type in the fibre equipped with a distinguished point
determined by the section s.

A paper of Kraus and Sattler [KS17] discusses how, for certain “Reedy” diagrams, the data
of a coherent diagram can be given a finite internal description, without needing to specify in-
finitely many coherences. Kraus and Sattler’s construction applies to this index category, and
their construction yields a description equivalent to the one presented here. Coquand, Ruch, and
Sattler [CRS20] also consider constructive sheaf models of univalent type theory on the walking
section-retraction.

3.3.1 Contexts and Substitutions

In this (weak) model, each context ‘Γ ctx’ is interpreted as an element of a record type

Definition 3.3.1 (Contexts in Pointed Spaces).

Ctx :≡ {B : U ,

E : B→ U ,

p : ∏(g:B)E(g)}

consisting of a type B, a family of types over it E, and a section p. Equivalently, we could package E

and p together into a family of pointed types. This corresponds to the section/retraction pair

∑(g:BΓ) EΓ(g)

BΓ
pr1

(g,pg)
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With this in mind, we refer to BΓ as the base or index space, each EΓ(−) as a fibre, and p as the point
(though this is a little imprecise, since really it is a family of points, one for each fibre).

A substitution ‘Γ ⊢ θ : ∆’ between Γ, ∆ : Ctx is then a map of the base and a map of the fibres
that commute with the section, represented by the record type

Definition 3.3.2 (Substitutions in Pointed Spaces).

{B : BΓ→ B∆,

E : ∏(g:BΓ)EΓ(g)→ E∆(B(g)),

p : ∏(g:BΓ)E(g, pΓ(g)) =E∆(B(g)) p∆(B(g))}

This amounts to a commutative diagram

∑(g:BΓ) EΓ(g) ∑(d:B∆) E∆(d)

BΓ B∆

Definition 3.3.3 (Empty Context in Pointed Spaces). The empty context ‘∅ ctx’ is given by the unit
type over the unit type.

B(∅) :≡ 1

E(∅)(⋆) :≡ 1

p(∅)(⋆) :≡ ⋆

Note that we use “copattern” notation [APTS13] to describe elements of records/functions, i.e. this
is shorthand for the record ∅ :≡ {B :≡ 1,E :≡ λg.1, p :≡ λg.⋆}.

For a context Γ : Ctx, the context ♮Γ : Ctx is defined by keeping the base the same but replacing
the fibre with the point:

Definition 3.3.4 (Natural Context in Pointed Spaces).

B(♮Γ) :≡ BΓ

E(♮Γ)(g) :≡ 1

p(♮Γ)(g) :≡ ⋆

The unit substitution Γ ⊢ η : ♮Γ is given by

Bη(g) :≡ g

Eη(g, g′) :≡ ⋆

pη(g) :≡ refl⋆

i.e. it is the identity in the base, and sends everything in EΓ to the point, which in particular sends
the sections of Γ to the point. Because the fibres are pointed, there is also a counit ♮Γ ⊢ ε : Γ

Bε(g) :≡ g

Eε(g, ⋆) :≡ pΓ(g)

pε(g, ⋆) :≡ reflpΓ(g)
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i.e. it is again the identity on the base, and sends the point in the fibre to the chosen point in each
fibre.

For a context Γ (thought of as a closed type), the context ♮Γ is contractible in this model when BΓ
is a contractible type. A ♮-connected context is up to equivalence {BΓ :≡ 1,EΓ : 1→ U , pΓ : EΓ(⋆)}
and thus is exactly a pointed type. Moreover, the substitutions between them are exactly pointed
maps, with preservation of the point given by the third component.

Supposing that Γ as a context contains a single type A, we are used to thinking of substitutions
∅ ⊢ θ : A as corresponding to ‘elements of A’. In our setting, however, if A is a ♮-connected type
then the type of such substitutions is contractible — there is a unique pointed map from 1 to A
that sends the point in the fibre to the point of A. Thus, substitutions from ∅ do not capture the
elements of the fibre of A. To access the elements of the fibre, we can instead consider substitutions
from B ⊢ θ : A, where B is the booleans over the unit type:

Definition 3.3.5.

BB :≡ 1

EB(⋆) :≡ 2

pB(⋆) :≡ true

Substitutions B ⊢ θ : A correspond to pointed maps from the booleans into EA. Such a pointed
map sends true to the point, but has one remaining degree of freedom — where it sends false. Thus,
the substitutions from B into a ♮-connected type A are equivalent to EA(⋆). We use an analogue of
B in Section 2.1.

The fact that substitutions ∅ ⊢ θ : A ‘miss’ data from A does not contradict the equivalence of
types A ≃ (1→ A): we will see that the interpretation of function types does capture the fibre of A
in the fibre of the function type.

3.3.2 Types and Terms

Once we have the definition of a substitution, one can determine what the data of a ‘type in context’
should be: the data of an arbitrary substitution into that context A ⊢ pr : Γ. In the present case a
type ‘Γ ⊢ A type’ unwinds an element of the record type

Definition 3.3.6 (Dependent Type in the Pointed Spaces Model).

{B : BΓ→ U ,

E : ∏(g:BΓ)B(g)→ EΓ(g)→ U ,

p : ∏(g:BΓ)∏(a:B(g))E(g, a, pΓ(g))}

The base of a type A depends only on the base of the context, while the fibre depends on both the
base and the fibre of the context, and the base of the type. Interestingly, not every fibre of the EA
family has a specified point, only the fibres that additionally lie over the basepoint of EΓ.
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The data of a type in context can arranged into the following diagram.

∑(g:BΓ) ∑(a:BA(g)) ∑(e:EΓ(g)) EA(g, a, e) ∑(g:BΓ) EΓ(g)

∑(g:BΓ) BA(g) BΓ

where the upwards maps are sections definable from pΓ and pA.
This section/retraction on the left of the diagram is exactly the interpretation of context extension

‘Γ.A ctx’, and the horizontal maps describe the projection substitution Γ.A ⊢ prA : Γ

Definition 3.3.7 (Context Extension in Pointed Spaces). The context extension ‘Γ.A ctx’ is defined
by

B(Γ.A) :≡ ∑(g:BΓ)BA(g)

E(Γ.A)(g, a) :≡ ∑(e:EΓ(g))EA(g, a, e)

p(Γ.A)(g, a) :≡ (pΓ(g), pA(g, a))

A ‘term in context’ must be the data of a section of the projection substitution ‘Γ.A→ Γ’ shown
in the diagram above — this is now a section in the horizontal direction. Building the section
coherence in via dependency gives

Definition 3.3.8 (Terms in Pointed Spaces). A term ‘Γ ⊢ t : A’ is an element of the record type

{b : ∏(g:BΓ)BA(g)

e : ∏(g:BΓ)∏(e:EΓ(g))EA(g, b(g), e)

p : ∏(g:BΓ)e(g, pΓ(g)) =EA(g,b(g),pΓ(g)) pA(g, b(g))}

For ♮Γ ⊢ A type, we can define the natural type Γ ⊢ ♮A type by replacing the fibres with the
unit type:

Definition 3.3.9 (Natural Type in Pointed Spaces).

B(♮A)(g) :≡ BA(g)

E(♮A)(g, a, e) :≡ 1

E(♮A)(g, a) :≡ ⋆

Note that this definition only uses g : BΓ and not the fibre or the section of Γ, so the definition is
independent of whether we ask for an A that depends on Γ or on ♮Γ.

3.3.3 Ordinary Type Constructors

This internal model supports both dependent sums and dependent products satisfying the expected
equations propositionally. Our goal here is to demonstrate how these type formers vary over the
data of the context, so we instead describe non-dependent ×-types and→-types, but the analogous
definitions replacing × with Σ and→ with Π give the dependent versions.

Product types are easy: we form the product both downstairs and upstairs. The pairing and
projection terms are defined using the pairing and projection of the underlying ×-types.
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Definition 3.3.10 (Product Types in Pointed Spaces). For two types ‘Γ ⊢ A type’ and ‘Γ ⊢ B type’
define ‘Γ ⊢ A× B type’ by

B(A× B)(g) :≡ BA(g)× BB(g)

E(A× B)(g, (a, b), e) :≡ EA(g, a, e)× EB(g, b, e)

p(A× B)(g, (a, b)) :≡ (pA(g, a), pB(g, b))

Function types are more interesting. The base of A→ B is not the type of functions BA→ BB,
but rather the entire type of substitutions Γ.A to Γ.B over Γ. For a fixed g : BΓ, the data of such a
substitution unwinds to triples

Arr(A, B)(g : BΓ) :≡ {b : BA(g)→ BB(g)

e : ∏(a:BA(g))EA(g, a, pΓ(g))→ EB(g, b(a), pΓ(g))

p : ∏(a:BA(g))e(a, pA(g, a)) = pB(g, b(a))}

Definition 3.3.11 (Function Types in Pointed Spaces). For two types ‘Γ ⊢ A type’ and ‘Γ ⊢ B type’
define ‘Γ ⊢ A→ B type’ by

B(A→ B)(g) :≡ Arr(A, B)(g)

E(A→ B)(g, (b f , e f , p f ), e) :≡ ∏(a:BA(g))EA(g, a, e)→ EB(g, b f (a), e)

p(A→ B)(g, (b f , e f , p f )) :≡ e f

This definition makes it clear that the ♮ modality does not preserve Π-types: the base of
♮(A→ B) is Arr(A, B), while the base of (♮A→ ♮B) is essentially BA→ BB (because the fibres of
♮B are 1, the rest of the data of Arr(♮A, ♮B) is determined).

We can also define identity types and the universe. Similar to Σ-types, Id-types are given
component-wise. The type ‘a = a′’ has as its base paths in the base of ‘A’, with the family over a
path p : B(a)(g) = B(a′)(g) given by dependent paths in EA(g,−, e) that lie over it.

Definition 3.3.12 (Identity Types in Pointed Spaces). For ‘Γ ⊢ a : A’ and ‘Γ ⊢ a′ : A’, define
‘Γ ⊢ (a = a′) type’ by

B(a = a′)(g) :≡ (B(a)(g) = B(a′)(g))

E(a = a′)(g, p, e) :≡ (E(a)(g, e) =apEA(g,−,e)(p) E(a′)(g, e))

p(a = a′)(g, p) :≡ p(a)(g) � apdpA(g,BB(−)(g))(p) � p(a′)(g)−1

The types of the paths used to define the basepoint of each family above are

p(a)(g) : E(a)(g, pΓ(g)) = pA(g,B(a)(g))

apdpA(g,BB(−)(g))(p) : pA(g,B(a)(g)) =apEA(g,−,e)(p) pA(g,B(a′)(g))

p(a′)(g)−1 : pA(g,B(a′)(g)) = E(a′)(g, pΓ(g))

Finally, the universe has as its base the entire type of pointed families, and as its fibres, the type
of unpointed families over the same base.
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Definition 3.3.13 (The Universe in Pointed Spaces). The universe ‘∅ ⊢ U type’ is given by

B(U )(⋆) :≡ ∑(B:U )∑(E:B→U )∏(b:B)E(b)

E(U )(⋆, (B, E, p), ⋆) :≡ B→ U
p(U )(⋆, (B, E, p)) :≡ E

3.3.4 Linear Type Formers

The linear type formers finally use the monoidal structure of pointed types. Recall that pointed
types are monoidal for the smash product: the cofibre of the wedge inclusion (A, a0) ∧ (B, b0) :≡
(A, a0) ∨ (B, b0)→ A× B. We write (a, b) : A ∧ B implicitly including the pair into the cofibre. The
smash product A ∧ B is pointed by (a0, b0).

Definition 3.3.14 (Tensor Types in Pointed Spaces). For two types ‘♮Γ ⊢ A type’ and ‘♮Γ ⊢ B type’
define ‘♮Γ ⊢ A⊗ B type’ by

B(A⊗ B)(g) :≡ BA(g)× BB(g)

E(A⊗ B)(g, (a, b), ⋆) :≡ (EA(g, a, ⋆), pA(g, a)) ∧ (EB(g, b, ⋆), pB(g, b))

p(A⊗ B)(g, (a, b)) :≡ (pA(g, a), pB(g, b))

This definition can only be made because the fibres of ♮Γ are trivial. If instead we have arbitrary
e : EΓ, then we are stuck: in general we do not have points ? : EA(g, a, e) and ? : EB(g, b, e) to use
to form the smash product.

It is not difficult to see how the dependent tensor (with dependency still mediated by ♮) may be
implemented. The formulation is slightly awkward, because of the need to also apply ♮ to the type
A in the context.

Definition 3.3.15 (Dependent Tensor Types in Pointed Spaces). For two types ‘♮Γ ⊢ A type’ and
‘♮(♮Γ).A ⊢ B type’ define ‘♮Γ ⊢ A⊗ B type’ by

B(A⊗ B)(g) :≡ ∑(a:BA(g))BB(g, a)

E(A⊗ B)(g, (a, b), ⋆) :≡ EA(g, a, ⋆) ∧ EB((g, a), b, ⋆)

p(A⊗ B)(g, (a, b)) :≡ ((pA)(g, a), (pB)((g, a), b))

The (non-dependent) ⊸-type then simply uses the type of pointed functions for each fibre,
following the format of Proposition 2.1.17:

Definition 3.3.16 (Hom Types in Pointed Spaces). For two types ‘♮Γ ⊢ A type’ and ‘♮Γ ⊢ B type’,
define ‘Γ ⊢ A ⊸ B type’ by

B(A ⊸ B)(g) :≡ ∏(a:BA(g))BB(g)

E(A ⊸ B)(g, f , e) :≡ ∏(a:BA(g))EA(g, a, ⋆)→⋆ EB(g, f (a), ⋆)

p(A ⊸ B)(g, f ) :≡ λa.const⋆EB(g, f (a),⋆)

so that the specified point is the hom that is constantly the base point of each EB.
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Chapter 4

Outlook

4.1 Type Theory

The type theory presented in this thesis is the first example of a type theory that successfully
combines four incompatible seeming elements: dependency, linearity, informal internal reasoning,
and a homotopical interpretation. We hope it will not be the last!

We anticipate that the fibrational framework [LSR17; LRS22] (once appropriately extended to
dependent types), will be able to capture the rules of our theory, if not useful strict equalities on
raw syntax. Our ⊗-type can be seen as an example of a ‘binary’ modality that reifies the structure
of contexts; exactly the kind of situation that the fibrational framework is designed to capture.

This particular syntactic presentation, however, feels to the author like somewhat of a dead-end
from an extensibility standpoint. The syntax, all though it feels very nice to use informally, is
quite brittle: As we try to make clear in Section 3.1, there are quite a lot of innocent changes or
simplifications to the theory that have wide-ranging consequences. The only ‘major’ extensions
to this type theory that the author is comfortable to claim are possible, are additional monoidal
products (with no structural rules, like ⊗). This is not likely to be very useful!

Unpointed Linear Types. Our syntax builds the fact that the linear types have a zero object into its
foundations, in particular, this is the reason that marked variable usage is available. This matches
nicely with our intended models and makes the rules for modality ♮ very pleasant. Knowing
that there is a zero object allows us to formulate ♮ as a negative type former, adjoint to itself, and
furnishes us with the map ♮A→ A that would not otherwise exist.

However, this assumption does restrict the potential models of the theory. One can form the
category of parameterised objects for any category C, and in favourable cases the result is an
∞-topos. In general, the self-adjointness coincidence of ♮ disappears and the category PC admits an
adjoint quadruple

PC

Set

ΓU 10
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where Γ denotes the global sections functor, U denotes the underlying set functor, and 0 and 1
represent the constant family functors on the initial and terminal objects of C respectively. Unfortu-
nately this does not line up with the adjoint quadruple that defines cohesive toposes setup [Law07;
Shu18]: the global sections functor here is the rightmost adjoint. A hypothetical type theory that
captures this situation therefore have S :≡ 1 ◦U and ♭ :≡ 1 ◦ Γ, but no modality corresponding to ♯.
The S modality would mediate dependency, like the ♮ mediates dependency in the present theory.

Such a type theory would have a wealth of models by taking C to be Psh(M) for any symmetric
monoidal category M. The presheaf topos Psh(M) is always a symmetric monoidal closed
category, with Day convolution as the monoidal product [Day70]. The model is then in set-
indexed families of these presheaves P(Psh(M)), which admits a fully faithful monoidal inclusion
M ↪→ P(Psh(M)). This two-step construction would admit a more expressive type theory than
working in directly in the monoidal category Psh(M), as we explain in Remark 1.3.15. A hope is
that we could use the type theory to reason about arbitrary symmetric monoidal categories, even if
the originalM has no other structure, perhaps as an alternative to [Shu21]. This family of models
is the similar to the one targeted by the Proto-Quipper-M [FKS20] variant of Quantitative Type
Theory.

In an unpointed version, some aspects of the type theory simplify: for example, there is no need
for marked variable uses or the related admissible operations on terms. But some aspects become
more complicated: we can no longer assume that 1⊗ 1 ≃ 1, and so the syntax of palettes and slices
will at the very least need to count how many instances of 1 have accumulated!

The rules for S, as a left-adjoint monadic modality, would involve a kind of ‘locking’ of variables
in the context, in the style of [Clo18, §5]. It remains to be seen how this would interact with the
colour labels:.

4.2 Synthetic Homotopy Theory

There is far more synthetic stable homotopy theory that may be internalisable in this type theory.
The most obvious next step is to investigate synthetic homology and cohomology:

Definition 4.2.1. For a dull pointed space X and reduced type E, the nth homology and cohomology of
X with coefficients in E are defined by

En(X) :≡ πs
n(Σ

∞(X)⊗ E)

En(X) :≡ πs
n(Σ

∞(X) ⊸ E)

Using Axiom S, we expect these groups to form a ‘(co)homology theory’, in the sense of the
Eilenberg-Steenrod axioms (see [Cav15, §3] for a type-theoretic description) for any reduced type E.
To recover ordinary cohomology, we need to define a reduced type ‘HZ’ that satisfies πs

0(HZ) = Z

and πs
n(HZ) = 0 for n ̸= 0. Axiom N implies that πs

0S = Z, so we expect to form such an HZ by
stably truncating S to remove the stable homotopy groups above dimension 0. We distinguish this
from ordinary type-theoretic truncation, which removes the ordinary homotopy groups of a type.
This stable truncation operation would be specified by a higher inductive type: nullification at ΣS.
It may also be possible to define HZ/2 internally, and work with the Steenrod operations as maps
HZ/2→ HZ/2. We leave this promising line for future work.
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Appendix A

Complete Rules of the Theory

Judgements for palettes:

• Φ palette

• Φ ⊢ c colour

• Φ ⊢ s preslice

• Φ ⊢ s presliceϵ

• Φ ⊢ s slice

• Φ ⊢ sL ⊠ sR presplit

• Φ ⊢ sL ⊠ sR split

• Φ ⊢ i unit

• Φ ⊢ κ : Ψ

Judgements for contexts, types and terms:

• Φ | Γ ctx

• Φ | Γ ⊢ A type

• Φ | Γ ⊢ a : A

• Φ | Γ ⊢ A ≡ B type

• Φ | Γ ⊢ a ≡ a′ : A

Judgements related to pattern matching:

• Φ | Γ ⊢ Ψ | Ω tele

• Φ | Γ ⊢ (κ | θ) : Ψ | Ω

• Φ | Γ ⊢ Ψ | ∆ ⊢ p : A pattern

• Φ | Γ ⊢ a ▷◁ p[κ | θ] : A pattern
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A.1 Palettes

Palettes:

PAL-EMPTY
1 palette

PAL-×
Φ1 palette Φ2 palette

Φ1, Φ2 palette

PAL-SPHERE
∅ palette

PAL-SPHERE-NAMED
∅i palette

PAL-⊗
Φ1 palette Φ2 palette

Φ1 ⊗Φ2 palette

PAL-COL
Φ palette

c ≺ Φ palette

Colours:

COL-HERE
c ≺ Φ ⊢ c colour

COL-SUB
Φ ⊢ c colour

t ≺ Φ ⊢ c colour

COL-×-LEFT
Φ1 ⊢ c colour

Φ1, Φ2 ⊢ c colour
COL-×-RIGHT

Φ2 ⊢ c colour

Φ1, Φ2 ⊢ c colour

COL-⊗-LEFT
Φ1 ⊢ c colour

Φ1 ⊗Φ2 ⊢ c colour
COL-⊗-RIGHT

Φ2 ⊢ c colour

Φ1 ⊗Φ2 ⊢ c colour

Slices:

Φ ⊢ ∅ preslice c ≺ Φ ⊢ c preslice

Φ ⊢ s preslice

c ≺ Φ ⊢ s preslice

Φ1 ⊢ s preslice

Φ1, Φ2 ⊢ s preslice

Φ2 ⊢ s preslice

Φ1, Φ2 ⊢ s preslice

ΦL ⊢ sL preslice ΦR ⊢ sR preslice

ΦL ⊗ΦR ⊢ sL ⊗ sR preslice

A preslice is then a pair of a pure preslice Φ ⊢ s preslice and a flag ϵ representing the presence
or absense of 1. We write preslices as s⊗ ϵ, and use the shorthand s when ϵ ≡ ⊥ and s⊗ 1 when
s ≡ ⊤.

A slice is then formed by

Φ ⊢ c colour

Φ ⊢ c slice

Φ ⊢ s presliceϵ

Φ ⊢ (t. ≺ s) slice Φ ⊢ (t. ≺ ∅i.) slice
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For any slice s, let u(s) be the underlying preslice, defined by

u(c) :≡ c

u(t. ≺ s) :≡ s

u(t. ≺ ∅i) :≡ ∅

Palette Splits: A presplit Φ ⊢ sL ⊠ sR presplit presupposes that Φ is a palette sL and sR are each a
preslice.

∅ ⊢ (∅⊗ ϵL)⊠ (∅⊗ ϵR) presplit

ϵL ≡ ⊤ or ϵR ≡ ⊤
Φ ⊢ (∅⊗ ϵL)⊠ (∅⊗ ϵR) presplit

c ≺ Φ ⊢ (c⊗ ϵL)⊠ (∅⊗ ϵR) presplit c ≺ Φ ⊢ (∅⊗ ϵL)⊠ (c⊗ ϵR) presplit

Φ ⊢ sL ⊠ sR presplit

c ≺ Φ ⊢ sL ⊠ sR presplit

Φ1 ⊢ s1L ⊠ s1R presplit

Φ1, Φ2 ⊢ s1L ⊠ s1R presplit

Φ2 ⊢ s2L ⊠ s2R presplit

Φ1, Φ2 ⊢ s2L ⊠ s2R presplit

Φ1 ⊢ s1L ⊠ s1R presplit

Φ2 ⊢ s2L ⊠ s2R presplit

Φ1 ⊗Φ2 ⊢ (s1L ⊗ s2L)⊠ (s1R ⊗ s2R) presplit

A split Φ ⊢ sL ⊠ sR split is then

Φ ⊢ u(sL)⊠ u(sR) presplit

Φ ⊢ sL ⊠ sR split

Palette Units

UNIT-ZERO
Φ ⊢ 0 unit

UNIT-HERE
∅i ⊢ i unit

UNIT-SUB
Φ ⊢ i unit

(c ≺ Φ) ⊢ i unit

UNIT-LEFT
Φ1 ⊢ i unit

Φ1, Φ2 ⊢ i unit
UNIT-RIGHT

Φ2 ⊢ i unit

Φ1, Φ2 ⊢ i unit
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Palette Substitutions

PAL-SUB-EMPTY
Φ ⊢ · : 1

PAL-SUB-×
Φ ⊢ κ1 : Ψ1 Φ ⊢ κ2 : Ψ2

Φ ⊢ κ1, κ2 : Ψ1, Ψ2

PAL-SUB-⊗

Φ ⊢ sL ⊠ sR presplit

ΦsL ⊢ κL : ΨL ΦsR ⊢ κR : ΨR

Φ ⊢ κL ⊗ κR : ΨL ⊗ΨR
PAL-SUB-UNIT

Φ ⊢ U unit

Φ ⊢ (U/j) : ∅j

PAL-SUB-NAME

Φ ⊢ s slice

Φ ⊢ u(s)⊠∅ presplit Φu(s) ⊢ κ : Ψ

Φ ⊢ (s/c ≺ κ) : (c ≺ Ψ)

A.1.1 Admissible Operations

Filtering

PAL-FILTER
Φ ⊢ s slice

Φs palette
−−−−−−

Composing Slices

Φ ⊢ s slice Φs ⊢ t slice

Φ ⊢ t slice
−−−−−−−−−−−−−−

Recolouring

RECOLOUR-SLICE
r ≺ Φ ⊢ s slice

t ≺ Φ ⊢ st↔r slice
−−−−−−−−− RECOLOUR-SPLIT

r ≺ Φ ⊢ sL ⊠ sR split

t ≺ Φ ⊢ sL
t↔r ⊠ sR

t↔r split
−−−−−−−−−−−−−−

Weakening

WK-SLICE
Φ ⊢ s slice

Φ, Ψ ⊢ s slice
−−−−−−− WK-SLICE-ONE

1 ⊢ s slice

Φ ⊢ s slice
−−−−−−

Marking

MARK-SLICE
t ≺ Φ ⊢ s slice

t ⊢ smΦ slice
−−−−−−−− MARK-SPLIT

t ≺ Φ ⊢ sL ⊠ sR split

t ⊢ sL
mΦ ⊠ sR

mΦ split
−−−−−−−−−−−
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Substitution

SUBST
t ≺ Φ ⊢ κ : Ψ t ≺ Φ, Ψ ⊢ c colour

t ≺ Φ ⊢ c[κ] slice
−−−−−−−−−−−−−−−−−−−−

SUBST
t ≺ Φ ⊢ κ : Ψ t ≺ Φ, Ψ ⊢ s slice

t ≺ Φ ⊢ s[κ] slice
−−−−−−−−−−−−−−−−−−− SUBST

t ≺ Φ ⊢ κ : Ψ t ≺ Φ, Ψ ⊢ sL ⊠ sR split

t ≺ Φ ⊢ sL[κ]⊠ sR[κ] split
−−−−−−−−−−−−−−−−−−−−−−

Tensor Merge

MERGE

t ≺ Φ ⊢ sL ⊠ sR split

t′ ≺ ΦsL ⊗ΦsR ⊢ t slice

t ≺ Φ ⊢ t[(t ≺ sL ⊠ sR/t′)]
−−−−−−−−−−−−−−

A.2 Contexts

Contexts:

CTX-EMPTY
Φ palette

t ≺ Φ | · ctx
CTX-EXT

Φ ⊢ c colour

Φc | Γc ⊢ A type

Φ | Γ, xc : A ctx
CTX-EXT-MARKED

r | Γ ⊢ A type

t ≺ Φ | Γ, xr : A ctx

VAR
t ≺ Φ | Γ, xt : A, Γ′ ⊢ x : A

VAR-ROUNDTRIP
t ≺ Φ | Γ, xc : A, Γ′ ⊢ x : Ac↔t

VAR-MARKED
t ≺ Φ | Γ, xc : A, Γ′ ⊢ x : Ac↔t

A.2.1 Telescopes and Substitutions

Telescopes

TELE-EMPTY
t ≺ Φ | Γ ctx Ψ palette

t ≺ Φ | Γ ⊢ Ψ | · tele
TELE-EXT

t ≺ Φ | Γ ⊢ Ψ | Ω tele

t ≺ Ψ ⊢ c colour

(t ≺ Φ, Ψ)c | Γc, Ωc ⊢ A type

t ≺ Φ | Γ ⊢ Ψ | Ω, xc : A tele

TELE-EXT-MARKED

t ≺ Φ | Γ ⊢ Ψ | Ω tele

c | Γ, Ω ⊢ A type

t ≺ Φ | Γ ⊢ Ψ | Ω, xc : A tele
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We can extend a context with a telescope:

CTX-EXT-TELE
t ≺ Φ | Γ ⊢ Ψ | Ω tele

t ≺ Φ, Ψ | Γ, Ω ctx
−−−−−−−−−−−−

Substitutions

TELE-SUB-EMPTY
t ≺ Φ ⊢ κ : Ψ

t ≺ Φ | Γ ⊢ (κ | ·) : Ψ | ·

TELE-SUB-EXT

t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω
(t ≺ Φ)c[κ] | Γc[κ] ⊢ a : A[κ | θ]

t ≺ Φ | Γ ⊢ (κ | θ, a/xc) : Ψ | Ω, xc : A

TELE-SUB-EXT-MARKED

t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω
c | Γ ⊢ a : A[κ | θ]

t ≺ Φ | Γ ⊢ (κ | θ, a/x) : Ψ | Ω, xc : A

A.2.2 Admissible Operations

In all of the following admissible rules, J stands in for the context, a context extension, type or
term.

Filtering

CTX-FILTER
Φ ⊢ s slice Φ | Γ ctx

Φs | Γs ctx
−−−−−−−−−−−−− CTX-MARK

t ≺ Φ | Γ ctx

t | Γ ctx
−−−−−−−

The latter is defined from the former by filtering at the slice t. ≺ 1.

Recolouring We sometimes need to change the name of the top colour in a term:

RECOLOUR
r ≺ Φ | Γ ⊢ J

t ≺ Φ | Γt↔r ⊢ J t↔r
−−−−−−−−−−−

Weakening Variable weakening:

WK
Φ | Γ, Γ′ ⊢ J

Φ | Γ, xc : A, Γ′ ⊢ J
−−−−−−−−−−− WK-MARKED

Φ | Γ, Γ′ ⊢ J

Φ | Γ, xc : A, Γ′ ⊢ J
−−−−−−−−−−−
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Marking

MARK
t ≺ Φ | Γ ⊢ J

t | Γ ⊢ J
−−−−−−−−

Mark-weakening

MARK-WK

t ≺ Φ | Γ ctx

t | Γ ⊢ J

t ≺ Φ | Γ ⊢ J
−−−−−−−−

Substitution

SUBST
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω t ≺ Φ, Ψ | Γ, Ω, Γ′ ⊢ J

t ≺ Φ | Γ, Γ′[κ | θ] ⊢ J [κ | θ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Tensor Merging

MERGE

t ≺ Φ ⊢ sL ⊠ sR split

t′ ≺ ΦsL ⊗ΦsR | ΓΦsL⊗ΦsR ⊢ J

t ≺ Φ | Γ ⊢ J [(t ≺ sL ⊠ sR/t′)]
−−−−−−−−−−−−−−−−

A.3 Types

Natural Modality

♮-FORM
t | Γ ⊢ A type

t ≺ Φ | Γ ⊢ ♮A type

♮-INTRO
t | Γ ⊢ a : A

t ≺ Φ | Γ ⊢ a♮ : ♮A
♮-ELIM

t ≺ Φ | Γ ⊢ a : ♮A

t ≺ Φ | Γ ⊢ a♮ : A

♮-BETA
t | Γ ⊢ a : A

t ≺ Φ | Γ ⊢ a♮♮ ≡ a : A
♮-ETA

t ≺ Φ | Γ ⊢ v : ♮A

t ≺ Φ | Γ ⊢ v ≡ v♮♮ : ♮A
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Tensor

⊗-FORM
t | Γ ⊢ A type t | Γ, xt : A ⊢ B type

t ≺ Φ | Γ ⊢ ⃝∑ (x:A) B type

⊗-INTRO

t ≺ Φ ⊢ sL ⊠ sR split

(t ≺ Φ)sL | ΓsL ⊢ a : A⌜sL⌝↔t (t ≺ Φ)sR | ΓsR ⊢ b : B[at↔⌜sL⌝/xt]⌜sR⌝↔t

t ≺ Φ | Γ ⊢ a ⊗sL sR
b :⃝∑ (x:A) B

Monoidal Unit

S-FORM
t ≺ Φ | Γ ⊢ S type

S-INTRO
t ≺ Φ ⊢ i unit

t ≺ Φ | Γ ⊢ ◊i : S

A.3.1 Pattern Matching

Match

MATCH

t ≺ Φ | Γ ⊢ Ψ | Ω ⊢ p : A pattern

t ≺ Φ | Γ, zt : A ⊢ C type

t ≺ Φ, Ψ | Γ, Ω ⊢ c : C[p/z]
t ≺ Φ | Γ ⊢ a : A

t ≺ Φ | Γ ⊢ let p = a in c : C[a/z]

MATCH-BETA

t ≺ Φ | Γ ⊢ Ψ | Ω ⊢ p : A pattern

t ≺ Φ | Γ, zt : A ⊢ C type

t ≺ Φ, Ψ | Γ, Ω ⊢ c : C[p/z]
t ≺ Φ | Γ ⊢ Ψ | Ω ⊢ s ▷◁ p[κ | θ] : A pattern

t ≺ Φ | Γ ⊢ (let p = s in c) ≡ c[κ | θ] : C[κ | θ]
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Patterns

t ≺ Φ | Γ ⊢ A type

t ≺ Φ | Γ ⊢ 1 | xt : A ⊢ x : A pattern

t ≺ Φ | Γ ⊢ Ψ1 | Ω1 ⊢ p1 : A pattern

t ≺ Φ | Γ, xt : A ⊢ B type

t ≺ Φ, Ψ1 | Γ, Ω1 ⊢ Ψ2 | Ω2 ⊢ p2 : B[p1/x] pattern

t ≺ Φ | Γ ⊢ Ψ1, Ψ2 | Ω1, Ω2 ⊢ (p1, p2) : ∑(x:A) B pattern t ≺ Φ | Γ ⊢ 1 | · ⊢ ⋆ : 1 pattern

t ≺ Φ | Γ ⊢ Ψ | Ω ⊢ p : A pattern

t ≺ Φ | Γ ⊢ Ψ | Ω ⊢ (p, p, reflp) : ∑(x:A) ∑(y:A) x =A y pattern

t ≺ Φ | Γ ⊢ Ψ | Ω ⊢ p : A pattern

t ≺ Φ | Γ ⊢ 1 | Ω ⊢ p♮ : ♮A pattern

cL | Γ ⊢ ΨL | ΩL ⊢ pL : AcL↔t pattern

cR | Γ, ΩL ⊢ ΨR | ΩR ⊢ pR : B[pL
t↔cL /x]cR↔t pattern

t ≺ Φ | Γ ⊢ (cL ≺ ΨL)⊗ (cR ≺ ΨR) | ΩL, ΩR ⊢ (pL ⊗cL cR
pR) :⃝∑ (x:A) B pattern

t ≺ Φ | Γ ⊢ ∅i | · ⊢ ◊i : S pattern

t | Γ ⊢ ΨL | ΩL ⊢ pL : A pattern

t ≺ Φ | Γ ⊢ ΨL | ΩL ⊢ (pL ⊗t u.≺∅i
◊i) :⃝∑ (x:A) S pattern

t | Γ, x : S ⊢ B type

t | Γ ⊢ ΨR | ΩR ⊢ pR : B[◊/x] pattern

t ≺ Φ | Γ ⊢ ΨR | ΩR ⊢ (◊i ⊗u.≺∅i t pR) :⃝∑ (x:S) B pattern
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t ≺ Φ | Γ ⊢ a ▷◁ x[· | a/x] : A

t ≺ Φ | Γ ⊢ a ▷◁ p1[κ1 | δ1] : A
t ≺ Φ | Γ ⊢ b ▷◁ p2[κ2 | δ2] : B[a/x]

t ≺ Φ | Γ ⊢ (a, b) ▷◁ (p1, p2)[κ1, κ2 | δ1, δ2] : ∑(x:A) B t ≺ Φ | Γ ⊢ ⋆ ▷◁ ⋆[· | ·] : 1

t ≺ Φ | Γ ⊢ a ▷◁ p[κ | δ] : A

t ≺ Φ | Γ ⊢ (a, a, refla) ▷◁ (p, p, reflp)[κ | δ] : A

t | Γ ⊢ n ▷◁ p[κ | δ] : A

t ≺ Φ | Γ ⊢ n♮ ▷◁ p♮[κ | δ] : ♮A pattern

t ≺ Φ ⊢ sL ⊠ sR split

ΦsL | ΓsL ⊢ a ▷◁ pL[κL | δL] : A
ΦsR | ΓsR ⊢ b ▷◁ pR[κR | δR] : B[a/x]

t ≺ Φ | Γ ⊢ (a ⊗sL sR
b) ▷◁ (pL ⊗cL cR

pR)[(sL/cL ≺ κL)⊗ (sR/cR ≺ κR) | δL, δR] :⃝∑ (x:A) B

t ≺ Φ | Γ ⊢ ◊j ▷◁ ◊i[j/i | ·]

t ≺ Φ | Γ ⊢ a ▷◁ pL[κL | δL] : A

t ≺ Φ | Γ ⊢ (a ⊗t u.≺∅i
◊i) ▷◁ (pL ⊗t u.≺∅i

◊i)[κL | δL] : A⊗ S

t ≺ Φ | Γ ⊢ b ▷◁ (pR[◊/x])[κR | δR] : B[◊/x]

t ≺ Φ | Γ ⊢ (◊i ⊗u.≺∅i t b) ▷◁ (◊i ⊗u.≺∅i t pR)[κL | δL] :⃝∑ (x:S) B
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A.3.2 Hom

⊸-FORM

r | Γ ⊢ A type

p ≺ (t ≺ Φ)⊗ r | Γ, xr : A ⊢ B type

t ≺ Φ | Γ ⊢ ⃝∏ (xr :A)
pB type

⊸-INTRO
p ≺ (t ≺ Φ)⊗ r | Γ, xr : A ⊢ b : B

t ≺ Φ | Γ ⊢ ∂pxr.b :⃝∏ (xr :A)
pB

⊸-ELIM

t ≺ Φ ⊢ sL ⊠ sR split r :≡ ⌜sR⌝
(t ≺ Φ)sL | ΓsL ⊢ f :⃝∏ (xr :A)

pB (t ≺ Φ)sR | ΓsR ⊢ a : A

t ≺ Φ | Γ ⊢ f sL⟨a⟩sR : B[a/x][(t ≺ sL ⊠ sR/p)]

⊸-BETA

t ≺ Φ ⊢ sL ⊠ sR split r :≡ ⌜sR⌝
p ≺ (ΦsL ⊗ r) | ΓsL , xr : A ⊢ b : B ΦsR | ΓsR ⊢ a : A

t ≺ Φ | Γ ⊢ (∂pxr.b)sL⟨a⟩sR ≡ b[a/x][(t ≺ sL ⊠ sR/p)] : B[a/x][(t ≺ sL ⊠ sR/p)]

⊸-ETA
t ≺ Φ | Γ ⊢ f :⃝∏ (xr :A)

pB

t ≺ Φ | Γ ⊢ f ≡ (∂pxr. f t⟨x⟩r) :⃝∏ (xr :A)
pB

A.4 Definitions of Admissible Rules

A.4.1 Recolouring

On contexts, we recolour each type and change the label on the variable if necessary:

(·)d↔c :≡ ·
(Γ, xc : A)d↔c :≡ Γd↔c, xd : Ad↔c

(Γ, xc′ : A)d↔c :≡ Γd↔c, xc′ : Ad↔c

(Γ, xc′ : A)d↔c :≡ Γd↔c, xc′ : A

On slices, replace c with d whenever it appears..
On types and terms, induct on the syntax to the leaves, applying the rule to any slices encoun-

tered.
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A.4.2 Marking

On preslices:

1mΦ :≡ 1

∅mΦ :≡ ∅
(s⊗ c)mΦ :≡ smΦ ⊗ 1 if c ∈ Φ

(s⊗ c)mΦ :≡ smΦ ⊗ c otherwise

(s⊗ 1)mΦ :≡ smΦ ⊗ 1

On slices:

rmΦ :≡ r. ≺ 1 if r ∈ Φ

rmΦ :≡ r otherwise

(r. ≺ s)mΦ :≡ r. ≺ smΦ

(r. ≺ ∅i)
mΦ :≡ r. ≺ ∅i

On telescopes:

(·)mΦ|Γ :≡ ·
(Ω, xr : A)mΦ|Γ :≡ ΩmΦ|Γ, xr : AmΦ|Γ

(Ω, xr : A)mΦ|Γ :≡ ΩmΦ|Γ, xr : AmΦ|Γ
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On types and terms:

xmΦ|Γ :≡ x if x ∈ Γ

xmΦ|Γ :≡ x otherwise

xmΦ|Γ :≡ x(
∑(x:A) B

)mΦ|Γ
:≡ ∑(x:AmΦ|Γ) BmΦ|Γ

(a, b)mΦ|Γ :≡ (amΦ|Γ, bmΦ|Γ)

pr1(p)mΦ|Γ :≡ pr1(pmΦ|Γ)

pr2(p)mΦ|Γ :≡ pr2(pmΦ|Γ)

(
∏(x:A) B

)mΦ|Γ
:≡ ∏(x:AmΦ|Γ) BmΦ|Γ

(λp.b)mΦ|Γ :≡ (λp.bmΦ|Γ)

f (a)mΦ|Γ :≡ fmΦ|Γ(amΦ|Γ)

(♮A)mΦ|Γ :≡ ♮AmΦ|Γ

(a♮)mΦ|Γ :≡ (amΦ|Γ)♮

(a♮)mΦ|Γ :≡ (amΦ|Γ)♮

(
⃝∑ (x:A) B

)mΦ|Γ
:≡ ⃝∑ (x:AmΦ|Γ) BmΦ|Γ

(a ⊗sL sR
b)mΦ|Γ :≡ amΦ|Γ ⊗sLmΦ sRmΦ bmΦ|Γ

(let x ⊗l r y = s in c)mΦ|Γ :≡ let x ⊗l r y = smΦ|Γ in cmΦ|Γ

(
⃝∏ (xr :A)

pB
)mΦ|Γ

:≡ ⃝∏ (xr :AmΦ|Γ)
pBmΦ|Γ

(∂pxr.b)mΦ|Γ :≡ ∂pxr.(bmΦ|Γ)

( f sL⟨a⟩sR)
mΦ|Γ :≡ fmΦ|Γ

sLmΦ⟨amΦ|Γ⟩sRmΦ

SmΦ|Γ :≡ S

◊i
mΦ|Γ :≡ ◊ if ∅i ∈ Φ

◊i
mΦ|Γ :≡ ◊i otherwise

(let ∅i = s in c)mΦ|Γ :≡ let ∅i = smΦ|Γ in cmΦ|Γ
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A.4.3 Filtering

Filtering a palette, defined on a well-formed slice.

Φ ⊢ s preslice

Φs palette
−−−−−−−

Φ ⊢ s presliceϵ

Φs palette
−−−−−−−−

Φ ⊢ s slice

Φs palette
−−−−−−

defined by

(c ≺ Φ)s :≡ Φs if Φ ⊢ s presliceϵ

(c ≺ Φ)c :≡ c ≺ Φ

(Φ, Φ′)s :≡ Φs if Φ ⊢ s presliceϵ

(Φ, Φ′)s :≡ Φ′s if Φ′ ⊢ s presliceϵ

(Φ⊗Φ′)s⊗∅ :≡ Φs

(Φ⊗Φ′)∅⊗s′ :≡ Φs′

(Φ⊗Φ′)s⊗s′ :≡ Φs ⊗Φ′s
′

Φs⊗1 :≡ Φs ⊗ 1

Φt.≺s :≡ t ≺ Φs

Φt.≺∅i. :≡ t ≺ ∅i

Filtering a context:

(·)s :≡ ·
(Γ, xc : A)s :≡ Γs, xc : A if c ∈ Φs

(Γ, xc : A)s :≡ Γs, xc : A otherwise

(Γ, xc : A)s :≡ Γs, xc : A

Define marking by filtering at the slice t. ≺ 1.

A.4.4 Telescope Substitution

On colours:

c[. . . , s/c, . . . ] :≡ s

On pure preslices, preslices and slices:

(c1 ⊗ · · · ⊗ cn)[κ] :≡ u(c1[κ])⊗ · · · ⊗ u(cn[κ])

(s⊗ 1)[κ] :≡ s[κ]⊗ 1

(s. ≺ s)[κ] :≡ t. ≺ s[κ]

(s. ≺ ∅i)[κ] :≡ t. ≺ ∅i
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On context extensions:

(·)[κ | θ] :≡ ·
(Γ′, xr : A)[κ | θ] :≡ Γ′[κ | θ], xr : A[κ | θ]atr

(Γ′, xr : A)[κ | θ] :≡ Γ′[κ | θ], xr : A[κ | θ]atc
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On types and terms:

x[κ | θ, a/xt, θ′]att :≡ a

x[κ | θ, a/xc, θ′]att :≡ at↔c[κ]

x[κ | θ, a/xc, θ′]att :≡ at↔c

y[κ | θ]att :≡ y

y[κ | θ]att :≡ y

(
∑(x:A) B

)
[κ | θ]att :≡ ∑(x:A[κ|θ]att) B[κ | θ]att

(a, b)[κ | θ]att :≡ (a[κ | θ]att, b[κ | θ]att)

pr1(p)[κ | θ]att :≡ pr1(p[κ | θ]att)

pr2(p)[κ | θ]att :≡ pr2(p[κ | θ]att)

(
∏(x:A) B

)
[κ | θ]att :≡ ∏(x:A[κ|θ]att) B[κ | θ]att

(λp.b)[κ | θ]att :≡ (λp.b[κ | θ]att)

f (a)[κ | θ]att :≡ f [κ | θ]att(a[κ | θ]att)

(♮A)[κ | θ]att :≡ ♮A[κ | θ]att

(a♮)[κ | θ]att :≡ (a[κ | θ]att)♮

(a♮)[κ | θ]att :≡ (a[κ | θ]att)♮

(
⃝∑ (x:A) B

)
[κ | θ]att :≡ ⃝∑ (x:A[κ|θ]att) B[κ | θ]att

(a ⊗sL sR
b)[κ | θ]att :≡ a[κ | θ]at⌜sL⌝ ⊗sL sR

b[κ | θ]at⌜sR⌝

(let x ⊗l r y = s in c)[κ | θ]att :≡ let x ⊗l r y = s[κ | θ]att in c[κ | θ]att

(
⃝∏ (xr :A)

pB
)
[κ | θ]att :≡ ⃝∏ (xr :A[κ|θ]atr)

pB[κ | θ]atp

(∂pxr.b)[κ | θ]att :≡ ∂pxr.(b[κ | θ]atp)

( f sL⟨a⟩sR)[κ | θ]att :≡ f [κ | θ]at⌜sL⌝sL⟨a[κ | θ]at⌜sR⌝⟩sR

S[κ | θ]att :≡ S

◊i[κ | θ]att :≡ ◊i

(let ◊i = s in c)[κ | θ]att :≡ let ◊i = s[κ | θ]att in c[κ | θ]att
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A.4.5 Single Slice Substitution

On preslices:

(s⊗ c⊗ s′)[r/c] :≡ s⊗ r⊗ s′

(s⊗ c⊗ s′)[t′. ≺ t/c] :≡ s⊗ t⊗ s′

(s⊗ c⊗ s′)[t′. ≺ ∅i/c] :≡ s⊗ s′

s[t/c] :≡ s otherwise

On actual slices, where we may be binding a new top colour, this bound top colour is maintained:

c[t/c] :≡ t

(s. ≺ s)[t/c] :≡ t. ≺ s[t/c]

(s. ≺ ∅i)[t/c] :≡ t. ≺ ∅i

On terms, we need to be more intelligent: after we have substituted t for c once, we do not want
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use t in the subterm, rather, just the top colour of t.

x[(t/c)] :≡ x

(
∑(x:A) B

)
[(t/c)] :≡ ∑(x:A[(t/c)]) B[(t/c)]

(a, b)[(t/c)] :≡ (a[(t/c)], b[(t/c)])

pr1(p)[(t/c)] :≡ pr1(p[(t/c)])

pr2(p)[(t/c)] :≡ pr2(p[(t/c)])

(
∏(x:A) B

)
[(t/c)] :≡ ∏(x:A[(t/c)]) B[(t/c)]

(λp.b)[(t/c)] :≡ (λp.b[(t/c)])

f (a)[(t/c)] :≡ f [(t/c)](a[(t/c)])

(♮A)[(t/c)] :≡ ♮A[(t/c)]

(a♮)[(t/c)] :≡ (a[(t/c)])♮

(a♮)[(t/c)] :≡ (a[(t/c)])♮

(
⃝∑ (x:A) B

)
[(t/c)] :≡ ⃝∑ (x:A[(t/c)]) B[(t/c)]

(a ⊗c sR
b)[(t/c)] :≡ a[(⌜t⌝/c)] ⊗t sR

b

(a ⊗sL c b)[(t/c)] :≡ a ⊗sL t b[(⌜t⌝/c)]

(a ⊗sL sR
b)[(t/c)] :≡ a[(t/c)] ⊗sL sR

b[(t/c)]

(let x ⊗l r y = s in c)[(t/c)] :≡ let x ⊗l r y = s[(t/c)] in c[(t/c)]

(
⃝∏ (xr :A)

pB
)
[(t/c)] :≡ ⃝∏ (xr :A[(t/c)])

pB[(t/c)]

(∂pxr.b)[(t/c)] :≡ ∂pxr.(b[(t/c)])

( f c⟨a⟩sR)[(t/c)] :≡ f [(⌜t⌝/c)]t⟨a⟩sR

( f sL⟨a⟩c)[(t/c)] :≡ f sL⟨a[(⌜t⌝/c)]⟩t
( f sL⟨a⟩sR)[(t/c)] :≡ f [(t/c)]sL⟨a[(t/c)]⟩sR

S[(t/c)] :≡ S

◊i[(t/c)] :≡ ◊i

(let ◊i = s in c)[(t/c)] :≡ let ◊i = s[(t/c)] in c[(t/c)]
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A.4.6 Tensor Merging

J [(t ≺ sL ⊠ sR/t′)] :≡ J [(t/t′)][(sL/⌜sL⌝)][(sR/⌜sR⌝)]
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Appendix B

Proofs of Admissibilty

B.1 Equations on Raw Syntax

The only cases which are less than entirely obvious are equations involving slices, so we check
them explicitly.

B.1.1 Marking

Lemma B.1.1. Marking is idempotent on the level of raw syntax.

• If t, ϕ | Γ rawctx then Γ ≡ Γ

• If t, ϕ | Γ rawctx and t, ϕ | γ ⊢ ψ | ∆ rawext then Γ, ∆ ≡ Γ, ∆mϕ|γ

• If ϕ, ϕ′, ϕ′′ | γ, γ′ ⊢ ψ | ∆ rawext then (∆mϕ|γ)
m(ϕ,ϕ′|γ,γ′) ≡ ∆m(ϕ,ϕ′|γ,γ′) ≡ (∆m(ϕ,ϕ′|γ,γ′))

mϕ′|γ′

• If ϕ, ψ, ψ′ ⊢ s rawpreslice or ϕ, ψ, ψ′ ⊢ s rawslice then (smϕ)
m(ϕ,ψ) ≡ sm(ϕ,ψ) ≡ (sm(ϕ,ψ))

mϕ

• If ϕ, ψ, ψ′ | γ, δ ⊢ a rawterm then (amϕ|γ)
m(ϕ,ψ|γ,δ) ≡ am(ϕ,ψ|γ,δ) ≡ (am(ϕ,ψ|γ,δ))

mϕ|γ

In words, zeroing a larger piece of the context subsumes zeroing a smaller piece.

Proof. Induction on the structure of the judgement.
For preslices, smϕ is calculated by replacing any colour in ϕ with 1, doing so twice has no

additional effect. For slices, the bound colour is not affected by the marking operation and so
equality follows by the equation for preslices.

For terms, variable cases are clear, as marked variables always remain marked, and unmarked
variable become marked iff they are are in γ, γ′. The remaining cases are immediate by induction.

B.1.2 Cartesian Substitution

Lemma B.1.2. Telescope substitution is associative:

𝒿[κ1 | θ1]
att[κ2 | θ2]

att ≡ 𝒿[κ2 | θ2]
att[κ1[κ2] | θ1[κ2 | θ2]]

att
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Proof. By induction on 𝒿, as usual.
For preslices, this follows by considering the case of a single colour. If c occurs in the first

substitution [κ1, s/c, κ′1], say, then

c[κ1, s/c, κ′1][κ2] ≡ s[κ2] ≡ c[κ1[κ2], s[κ2]/c, κ′1[κ2]] ≡ c[κ2][κ1[κ2], s[κ2]/c, κ′1[κ2]]

If it occurs in the second, then

c[κ1][κ2, s/c, κ′2] ≡ c[κ2, s/c, κ′2] ≡ c[κ2, s/c, κ′2][κ1]

because the colours occurring in s cannot be substituted for by κ1.
For slices, the bound top colour is unaffected by substitutions.

Lemma B.1.3. Substitution and weakening commute: 𝒿[κ | θ]att ≡ 𝒿 if κ and θ are fresh for 𝒿.

Proof. By induction. No colours or variables substituted for by κ or θ occur in 𝒿, and so at the
leaves the substitution has no effect.

Lemma B.1.4. Substitution and marking commute:

• If ϕ, ϕ′ | γ, γ′ ⊢ (κ | θ) : ψ | ω and ϕ, ϕ′, ψ, ϕ′′ | γ, γ′, ω, γ′′ ⊢ 𝒿 then

(𝒿[κ | θ]att)mϕ|γ ≡ 𝒿mϕ|γ[κmϕ | θmϕ|γ]att

• If ϕ | γ ⊢ (κ | θ) : ψ | ω and ϕ, ψ, ϕ′ | γ, ω, γ′ ⊢ 𝒿 then

(𝒿[κ | θ]att)mϕ,ϕ′|γ,γ′ ≡ 𝒿mϕ,ψ,ϕ′|γ,ω,γ′ [κ | θ]att

Note that in the second, the substitution does not need to be marked on the right-hand side.

Proof. By induction. For the second, any variable in ω is marked in 𝒿mϕ,ψ,ϕ′|γ,ω,γ′ , and so all terms
in θ have the marking operation applied to them at the leaves of 𝒿, by the definition of substitution
for marked variables.

Lemma B.1.5. Substitution and recolouring commute: if t, ϕ | γ ⊢ (κ | θ) : ψ | ω and t, ϕ, ψ, ϕ′ |
γ, ω, γ′ ⊢ 𝒿, then

𝒿c↔t[κ | θ]atc ≡ (𝒿[κ | θ]att)c↔t

Proof. On slices, this follows for individual colours by

tc↔t[κ] ≡ c[κ] ≡ c ≡ tc↔t ≡ t[κ]c↔t

and this is easily extended to the other judgements.

Lemma B.1.6. Telescope and slice substitution commute: if t, ϕ | γ ⊢ (κ | θ) : ψ | ω and ϕ, ψ, ϕ′ ⊢ 𝒿 and
ϕ, ψ, ϕ′ ⊢ s slice with c /∈ ψ, then

𝒿[(t/c)][κ | θ]att ≡ 𝒿[κ | θ]att[(t[κ]/c)]
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Proof. Similar to Lemma B.1.2. On the colour c (in a preslice) we see

c[(t/c)][κ] ≡ t[κ] ≡ c[(t[κ]/c)] ≡ c[κ][(t[κ]/c)]

where c ≡ c[κ] because c is not in ψ.
On terms, the interesting cases are the splitting terms where this slice substitution is handed

specially. For these:

(a ⊗c sR
b)[(t/c)][κ | θ]att ≡ (a ⊗t sR

b)[κ | θ]att

≡ a[κ | θ]att ⊗t[κ] sR[κ]
b[κ | θ]att

≡ (a[κ | θ]att ⊗c sR[κ]
b[κ | θ]att)[(t[κ]/c)]

using the assumption that c is not in ψ. The case of a ⊗sL c b is symmetric, and the other cases are
standard.

Lemma B.1.7. Substitution and merging commute: 𝒿[(t ≺ sL ⊠ sR/t′)][κ | θ]att ≡ 𝒿[κ | θ]att′ [(t ≺
sL[κ]⊠ sR[κ]/t′)]

Proof. By expanding the definition of [(t ≺ sL ⊠ sR/t′)] and applying Lemma B.1.5 and Lemma B.1.6.

B.1.3 Recolouring

Lemma B.1.8. (𝒿d↔c)e↔d ≡ 𝒿e↔c

Proof. On slices this is clear because (cd↔c)e↔d ≡ de↔d ≡ e ≡ ce↔c, then on all other judgements by
induction.

Lemma B.1.9. (𝒿d↔c)mϕ|γ ≡ (𝒿mϕ|γ)d↔c if c /∈ ϕ.

Proof. By induction. On the colour

(cd↔c)mϕ|γ ≡ dmϕ|γ ≡ d ≡ cd↔c ≡ (cmϕ|γ)d↔c

because neither c or d are in ϕ.

Lemma B.1.10. Weakening and recolouring commute: 𝒿d↔c ≡ 𝒿 if c is fresh for 𝒿.

Proof. By induction.

B.1.4 Slice Substitution and Merging

Lemma B.1.11. 𝒿[(s/s)][(t/t)] ≡ 𝒿[(t/t)][(s[(t/t)]/s)]

Proof. By induction.

Lemma B.1.12. 𝒿[(s/c)] ≡ 𝒿 if c is fresh for 𝒿

Proof. By induction.
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Lemma B.1.13. (𝒿mΦ|Γ)[(s/⌜s⌝)] ≡ 𝒿mΦ|Γ if t ≺ Φ ⊢ s slice.

Proof. If ⌜s⌝ ∈ Φ then this is Lemma B.1.12, because ⌜s⌝ does not occur in 𝒿mΦ|Γ. The remaining
case is s ≡ t, in which case we are calculating (𝒿mΦ|Γ)[(t/t)] ≡ 𝒿mΦ|Γ.

Lemma B.1.14. (𝒿[(s/c)])d↔e ≡ (𝒿d↔e)[(sd↔e/c)]

Proof. By induction.

Lemma B.1.15. (𝒿d↔e)[(s/c)] ≡ (𝒿[(s/c)])d↔e

Proof. By induction.

Lemma B.1.16.

𝒿[(s ≺ sL ⊠ sR/s′)][(t ≺ tL ⊠ tR/t′)]

≡ 𝒿[(t ≺ tL ⊠ tR/t′)][(s ≺ sL[(t ≺ tL ⊠ tR/t′)]⊠ sR[(t ≺ tL ⊠ tR/t′)]/s′t↔t′
)]

Proof. By Lemma B.1.11, Lemma B.1.15 and Lemma B.1.8.

Lemma B.1.17. (𝒿mΦ|Γ)[(t ≺ sL ⊠ sR/t′)] ≡ (𝒿mΦ|Γ)t↔t′ if t′ ≺ Φ ⊢ sL slice and t′ ≺ Φ ⊢ sR slice.

Proof. Apply Lemma B.1.13 twice.

Lemma B.1.18. (𝒿[(t ≺ sL ⊠ sR/t′)])d↔c ≡ (𝒿[(td↔c ≺ sL
d↔c ⊠ sR

d↔c/t′)])

Proof. Apply Lemma B.1.14 twice.

Lemma B.1.19. (𝒿d↔c)[(t ≺ sL ⊠ sR/t′)] ≡ (𝒿[(t ≺ sL ⊠ sR/t′)])d
t↔t′↔ct↔t′

) if t′ ≺ Φ ⊢ sL slice and
t′ ≺ Φ ⊢ sR slice.

Proof. By Lemma B.1.15 and Lemma B.1.8.

Lemma B.1.20. 𝒿[(t ≺ sL ⊠ sR/t′)] ≡ 𝒿[(t ≺ sL ⊠ sR/t′)]

Proof. By Lemma B.1.13 and Lemma B.1.9.

B.1.5 Context Filtering

Lemma B.1.21. If ϕ | γ ⊢ ψ | Γ′ rawext and Ξ{Φ} ⊢ s slice then (Γ′s)mϕ|γ ≡ (Γ′mϕ|γ)smϕ

Proof. This can be checked one variable at a time. Marked variables are left the same by both
operations. For an unmarked variable xc : A,

• If c /∈ Φ and c /∈ s then x is not marked by any operations on either side.

• If c /∈ Φ and c ∈ s then also c ∈ smϕ, and so x is marked by −s on the left and marked by −smϕ

on the right

• If c ∈ Φ then x is marked by −mϕ|γ on both sides.
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Lemma B.1.22. If t, ϕ | Γ rawctx and t ≺ Φ ⊢ s slice then Γs ≡ Γ and Γs ≡ Γ.

Proof. This can be checked one variable at a time. In all cases, all variables in Γ are marked on both
sides.

Lemma B.1.23. Substitution and context filtering commute on context extensions: for t, ϕ | γ ⊢ (κ | θ) :
ψ | ω and ϕ, ψ | γ, ω ⊢ ξ | Γ′ rawext and Ξ{Φ, Ψ} ⊢ s slice such that Γ′ does not use colours from ϕ or ψ,

Γ′s[κ | θ] ≡ (Γ′[κ | θ])s[κ]

Proof. Can be checked one variable at at time. Marked variables in Γ′ are always marked on both
sides, with the types unchanged. For an unmarked variable xc : A with c ∈ s, also c ∈ s[κ] by the
assumption that c /∈ ψ, and so x becomes marked on both sides. If c /∈ s, then c /∈ s[κ] for the same
reason, and then x remains unmarked on both sides.

Lemma B.1.24. Merging and context filtering commute on context extensions:

Γ′t[(t ≺ sL ⊠ sR/t′)] ≡ (Γ′[(t ≺ sL ⊠ sR/t′)])t[(t≺sL⊠sR/t′)]

Proof. Can similarly be checked one variable at at time.

B.2 Palettes

Lemma B.2.1. If Ξ{Φ} spot and Ξ ⊢ s slice, then exactly one of the following holds:

• Case 1: s contains all of Φ, so Ξs{Φ} spot

• Case 2: s intersects Φ, and there is Φ ⊢ s ∩Φ preslice so that Ξs{Φs∩Φ} spot.

• Case 3: s and Φ are disjoint, and Ξ{↓Ψ} ⊢ s slice for any palette Ψ.

Proof. Induction on the spot.

Lemma B.2.2. If Ξ{Φ} spot and Ξ ⊢ s slice contains Φ. Then (Ξ{↓Ψ})s ≡ Ξs{↓Ψ}

Proof. By induction on the spot, and the definition of the spot Ξs{Φ} spot given in Lemma B.2.1.

Lemma B.2.3. If Ξ{Φ, Ψ} spot and Ξ ⊢ s slice intersects Φ. Then (Ξ{Φ, Ψ})s ≡ (Ξ{↓Φ})s

Proof. By induction on the spot. Once we reach Φ, Ψ ⊢ s slice we must have Φ ⊢ s presliceϵ, and
then (Φ, Ψ)s ≡ Φs.
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Lemma B.2.4. Symmetry and associativity of the palette are admissible.

Ξ{Φ1, Φ2} spot
Ξ{Φ1, Φ2} ⊢ J

Ξ{↓Φ2, Φ1} ⊢ J
−−−−−−−−−

Ξ{ΦL ⊗ΦR} spot
Ξ{ΦL ⊗ΦR} ⊢ J

Ξ{↓ΦR ⊗ΦL} ⊢ J
−−−−−−−−−−

Ξ{(Φ1, Φ2), Φ3} spot
Ξ{(Φ1, Φ2), Φ3} ⊢ J

Ξ{↓Φ1, (Φ2, Φ3)} ⊢ J
−−−−−−−−−−−−

Ξ{Φ1, (Φ2, Φ3)} spot
Ξ{Φ1, (Φ2, Φ3)} ⊢ J

Ξ{↓(Φ1, Φ2), Φ3} ⊢ J
−−−−−−−−−−−−

Ξ{(ΦLL ⊗ΦLR)⊗ΦR} spot
Ξ{(ΦLL ⊗ΦLR)⊗ΦR} ⊢ J

Ξ{↓ΦLL ⊗ (ΦLR ⊗ΦR)} ⊢ J
−−−−−−−−−−−−−−−

Ξ{ΦLL ⊗ (ΦLR ⊗ΦR)} spot
Ξ{ΦLL ⊗ (ΦLR ⊗ΦR)} ⊢ J

Ξ{↓(ΦLL ⊗ΦLR)⊗ΦR} ⊢ J
−−−−−−−−−−−−−−−

Proof. For each, induction on the spot followed by induction on J when the spot is reached.

Lemma B.2.5. Slices can be palette-weakened.

Φ ⊢ s preslice Ξ{Φ} spot

Ξ{Φ} ⊢ s preslice
−−−−−−−−−−−−−−−

Φ ⊢ s presliceϵ Ξ{Φ} spot

Ξ{Φ} ⊢ s presliceϵ

−−−−−−−−−−−−−−−−
Φ ⊢ s slice Ξ{Φ} spot

Ξ{Φ} ⊢ s slice
−−−−−−−−−−−−−−

Proof. Induction on the spot.

Lemma B.2.6. Preslices in a tensor palette can be decomposed.

ΦL ⊢ sL slice ΦR ⊢ sR slice

(ΦL ⊗ΦR)
sL⊗sR ⊢ t presliceϵ

ΦL
sL ⊢ t|sL presliceϵ ΦR

sR ⊢ t|sR presliceϵ t ≡ t|sL ⊗ t|sR

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Proof. We do this in a few stages, first proving the simpler rules

ΦL ⊢ sL preslice ΦR ⊢ sR preslice

(ΦL ⊗ΦR)
sL⊗sR ⊢ t preslice

ΦL
sL ⊢ t|sL preslice ΦR

sR ⊢ t|sR preslice t ≡ t|sL ⊗ t|sR

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ΦL ⊢ sL presliceϵ ΦR ⊢ sR presliceϵ

(ΦL ⊗ΦR)
sL⊗sR ⊢ t presliceϵ

ΦL
sL ⊢ t|sL presliceϵ ΦR

sR ⊢ t|sR preslice t ≡ t|sL ⊗ t|sR

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

before the one given in the statement.
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• Pure preslices: If neither of sL and sR are equal to ∅, then (ΦL ⊗ΦR)
sL⊗sR ≡ ΦL

sL ⊗ΦR
sR .

And so t itself must be of the form tL ⊗ tR, so we define t|sL :≡ tL and t|sR :≡ tR.

If sR ≡ ∅, then (ΦL ⊗ΦR)
sL⊗sR ≡ ΦL

sL , in which case we can take t|sL :≡ t and t|sR :≡ ∅.
The other case follows by symmetry.

• Preslices: If sL is of the form s′L ⊗ 1 and sR does not contain 1, then by definition (ΦL ⊗
ΦR)

sL⊗sR ≡ (ΦL ⊗ΦR)
s′L⊗sR ⊗ 1. Because the 1 subpalette contains no colour names, we must

have (ΦL ⊗ΦR)
s′L⊗sR ⊢ t presliceϵ, and we can apply the previous version of the rule for pure

preslices. The remaining cases where 1 occurs in sR, or in both sL and sR, are similar.

• Slices: The only difference is that sL and sR may bind new top colours and t may mention
these top colours.

If it does not mention either then we have (ΦL ⊗ΦR)
sL⊗sR ⊢ t presliceϵ and we can apply the

previous version.

If t is of the form ⌜sL⌝⊗ tR for ΦR
sR ⊢ tR presliceϵ, then certainly also ΦsL

L ⊢ ⌜sL⌝ presliceϵ.
The other cases are similar.

Lemma B.2.7. Presplits in a tensor palette can be decomposed.

ΦL ⊢ sL preslice ΦR ⊢ sR preslice

(ΦL ⊗ΦR)
sL⊗sR ⊢ tL ⊠ tR presplit

ΦL
sL ⊢ tL|sL ⊠ tR|sL presplit ΦR

sR ⊢ tL|sR ⊠ tR|sR presplit
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ΦL ⊢ sL presliceϵ ΦR ⊢ sR presliceϵ

(ΦL ⊗ΦR)
sL⊗sR ⊢ tL ⊠ tR presplit

ΦL
sL ⊢ tL|sL ⊠ tR|sL presplit ΦR

sR ⊢ tL|sR ⊠ tR|sR presplit
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Proof. First, for sL and sR pure preplits, we check the same cases as the previous lemma. If neither
of sL and sR are ∅, then (ΦL ⊗ ΦR)

sL⊗sR ≡ ΦL
sL ⊗ ΦR

sR , and we must have tL ≡ tLL ⊗ tRL and
tR ≡ tLR ⊗ tRR with

ΦL
sL ⊢ tLL ⊠ tLR presplit

ΦR
sR ⊢ tRL ⊠ tRR presplit

But by definition of the decomposition in this case, tL|SL ≡ tLL, and similarly for the others, so we
have the required presplit.

If sR ≡ ∅, then (ΦL ⊗ΦR)
sL⊗sR ≡ ΦL

sL and by definition tL|sR ≡ tR|sR ≡ ∅ and tL|sL ≡ tL and
tR|sL ≡ tR. By assumption ΦL

sL ⊢ tL ⊠ tR presplit, which is the required split on the left. For the
split on the right, each of tL|sR and tR|sR are either ∅ or 1, and any combination of such is a valid
presplit in palette ∅ palette.

If sL or sR contain 1, let s′L and s′R denote the underlying pure presplits. We can apply
Lemma B.2.12 to see (ΦL⊗ΦR)

s′L⊗s′R ⊢ tL ⊠ tR presplit, and then apply the version for pure presplits,
weakening with 1 afterwards if necessary.
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Lemma B.2.8. Slices compose:

Φ ⊢ s preslice Φs ⊢ t preslice

Φ ⊢ t preslice
−−−−−−−−−−−−−−−−−

Φ ⊢ s presliceϵ Φs ⊢ t slice

Φ ⊢ t slice
−−−−−−−−−−−−−−−−

Proof. For the rule on the left, induction on s:

• ∅ preslice: The only pure preslice is t ≡ ∅, which is well-formed in the conclusion.

• c ≺ Φ ⊢ c preslice: Because (c ≺ Φ)c ≡ (c ≺ Φ), the conclusion is well-formed.

• c ≺ Φ ⊢ s preslice where Φ ⊢ s preslice: We have (c ≺ Φ)s ≡ Φs, and so Φs ⊢ t preslice. By
induction then, Φ ⊢ t preslice and so also c ≺ Φ ⊢ t preslice.

• Φ1, Φ2 ⊢ s preslice where Φ1 ⊢ s preslice: Then (Φ1, Φ2)s ≡ Φ1
s, and so Φ1

s ⊢ t preslice. By
induction Φ1 ⊢ t preslice, and so Φ1, Φ2 ⊢ t preslice

• Φ1, Φ2 ⊢ s preslice where Φ2 ⊢ s preslice: Follows by symmetry.

• ΦL⊗ΦR ⊢ sL⊗ sR preslice where ΦL ⊢ sL preslice and ΦR ⊢ sR preslice: By Lemma B.2.6 there
are

ΦL
sL ⊢ t|sL preslice

ΦR
sR ⊢ t|sR preslice

and so inductively

ΦL ⊢ t|sL preslice

ΦR ⊢ t|sR preslice

from which we can form ΦL ⊗ΦR ⊢ t|sL ⊗ t|sR preslice, and finally t|sL ⊗ t|sR ≡ t so we are
done.

For the rule on the right, the presence of 1 in s has no effect on the possibilities for t, so we just
have to check the new possibilities for t:

• t ≡ c: Then the colour c must occur in Φ, so also Φ ⊢ c slice.

• t ≡ t. ≺ t′ ⊗ ϵ for Φs ⊢ t′ ⊗ ϵ presliceϵ: Then we can apply the rule for pure preslices to t′

giving Φ ⊢ t′ preslice, and then re-form Φ ⊢ t. ≺ t′ ⊗ ϵ slice.

• t ≡ t. ≺ ∅i.: Then also Φ ⊢ t. ≺ ∅i. because this slice can be formed in any palette.

Lemma B.2.9. Slices ‘compose’: (Φs)t ≡ Φt for Φ ⊢ s presliceϵ and Φs ⊢ t slice.
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Proof. On pure preslices, this follows by inspecting each case of Lemma B.2.8. The only interesting
case is ΦL ⊗ΦR ⊢ sL ⊗ sR preslice. Suppose neither of s1 and s2 are ∅. Inductively,

(ΦL
sL)t|sL ≡ ΦL

t|sL

(ΦR
sR)t|sR ≡ ΦR

t|sR

and so

((ΦL ⊗ΦR)
sL⊗sR)t ≡ ((ΦL ⊗ΦR)

sL⊗sR)t|sL⊗t|sR

≡ (ΦL
sL ⊗ΦR

sR)t|sL⊗t|sR

≡ (ΦL
sL)t|sL ⊗ (ΦR

sR)t|sR

≡ ΦL
t|sL ⊗ΦR

t|sR

≡ (ΦL ⊗ΦR)
t|sL⊗t|sR

≡ (ΦL ⊗ΦR)
t

For slices, again we check the possibilities for t:

• t ≡ c: We have (Φs)c ≡ Φc, because restricting to the preslice s does not change the subpalette
with top colour c.

• t ≡ t. ≺ t′ ⊗ ϵ for Φs ⊢ t′ ⊗ ϵ presliceϵ: Follows from the version for pure preslices.

• t ≡ t. ≺ ∅i.: Follows because restricting to the slice t. ≺ ∅i. discards the palette entirely.

Lemma B.2.10. Splits are symmetric:

Φ ⊢ sL ⊠ sR presplit

Φ ⊢ sR ⊠ sL presplit
−−−−−−−−−−

Φ ⊢ sL ⊠ sR split

Φ ⊢ sR ⊠ sL split
−−−−−−−−−

Proof. By induction.

Lemma B.2.11. Splits may be weakened with 1:

Φ ⊢ sL ⊠ sR presplit

Φ ⊢ (sL ⊗ 1)⊠ sR presplit
−−−−−−−−−−−−−

Proof. Easy induction. The ϵ flag only has an effect in the Φ ⊢ (∅⊗ ϵL) ⊠ (∅⊗ ϵR) presplit case,
and the rule can be reapplied regardless of what ϵL was in the premise.

Lemma B.2.12. A slice or split in a palette containing 1 can be strengthened:

Φ⊗ 1 ⊢ s presliceϵ

Φ ⊢ s presliceϵ

−−−−−−−−−−
Φ⊗ 1 ⊢ sL ⊠ sR presplit

Φ ⊢ sL ⊠ sR presplit
−−−−−−−−−−−−
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Proof. The preslice is formed as s ≡ sL ⊗ sR with two preslices

Φ ⊢ sL presliceϵ

1 ⊢ sR presliceϵ

The only preslices in palette 1 are ∅ and 1, and so either s ≡ sL or s ≡ sL ⊗ 1. In either case we have
Φ ⊢ sL presliceϵ or Φ ⊢ sL presliceϵ.

The presplit is formed from the two presplits

Φ ⊢ sLL ⊠ sLR presplit

1 ⊢ sRL ⊠ sRR presplit

Again each of sRL and sRR are either ∅ or 1. In any case, we also have Φ ⊢ (sLL ⊗ sRL) ⊠ (sLR ⊗
sRR) presplit by applying Lemma B.2.11 if necessary.

Lemma B.2.13. Splits can be ‘interchanged’:

Φ ⊢ sL ⊠ sR presplit

ΦsL ⊢ tLL ⊠ tLR presplit ΦsR ⊢ tRL ⊠ tRR presplit

Φ ⊢ (tLL ⊗ tRL)⊠ (tLR ⊗ tRR) presplit

Proof. Induction on the outer presplit.

• ∅ ⊢ (∅⊗ ϵL)⊠ (∅⊗ ϵR): Each t? must have ∅ as the underlying pure presplit because Φ∅⊗ϵL

is equal to ∅ or 1, and so we have

∅ ⊢ (∅⊗ ϵLL ⊗ ϵRL)⊠ (∅⊗ ϵLR ⊗ ϵRR) presplit

as required.

• Φ ⊢ (∅ ⊗ ϵL) ⊠ (∅ ⊗ ϵR) with ϵL ≡ ⊤ or ϵR ≡ ⊤: Again each t? must have ∅ as the
underlying pure presplit, so the the same rule applies.

• c ≺ Φ ⊢ (c⊗ ϵL)⊠ (∅⊗ ϵR) presplit: On the left side we have

(c ≺ Φ)c⊗ϵL ⊢ tLL ⊠ tLR presplit

and so using Lemma B.2.12 if necessary, also

c ≺ Φ ⊢ tLL ⊠ tLR presplit

The preslices tRL and tRR must have underlying presplit ∅, and so we use Lemma B.2.11 to
see (c ≺ Φ)c⊗ϵL ⊢ (tLL ⊗ tRL)⊠ (tLR ⊗ tRR) presplit as required.

• c ≺ Φ ⊢ sL ⊠ sR presplit where Φ ⊢ sL ⊠ sR presplit: Because (c ≺ Φ)sL ≡ ΦsL and (c ≺ Φ)sR ≡
ΦsR in this case, induction gives Φ ⊢ (tLL⊗ tRL)⊠ (tLR⊗ tRR) presplit which can be weakened
to c ≺ Φ.
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• Φ1, Φ2 ⊢ s1L ⊠ s1R presplit where Φ1 ⊢ s1L ⊠ s1R presplit: Similar to the previous, (Φ1, Φ2)s1L ≡
Φ1

s1L and (Φ1, Φ2)s1R ≡ Φ1
s1R , so induction gives Φ1 ⊢ (tLL⊗ tRL)⊠ (tLR⊗ tRR) presplit which

can be weakened to Φ1, Φ2.

• Φ1 ⊗ Φ2 ⊢ (s1L ⊗ s2L) ⊠ (s1R ⊗ s2R) presplit where Φ1 ⊢ s1L ⊠ s1R presplit and Φ2 ⊢ s2L ⊠

s2R presplit: Then the other inputs are

(Φ1 ⊗Φ2)
s1L⊗s2L ⊢ tLL ⊠ tLR presplit

(Φ1 ⊗Φ2)
s1R⊗s2R ⊢ tRL ⊠ tRR presplit

which by Lemma B.2.7 decompose into

Φ1
s1L ⊢ tLL|s1L ⊠ tLR|s1L presplit

Φ2
s2L ⊢ tLL|s2L ⊠ tLR|s2L presplit

Φ1
s1R ⊢ tRL|s1R ⊠ tRR|s1R presplit

Φ2
s2R ⊢ tRL|s2R ⊠ tRR|s2R presplit

Now by induction

Φ1 ⊢ (tLL|s1L ⊗ tRL|s1R)⊠ (tLR|s1L ⊗ tRR|s1R) presplit

Φ2 ⊢ (tLL|s2L ⊗ tRL|s2R)⊠ (tLR|s2L ⊗ tRR|s2R) presplit

And so reapplying the tensor constructor for splits:

Φ1 ⊗Φ2 ⊢ ((tLL|s1L ⊗ tRL|s1R)⊗ (tLL|s2L ⊗ tRL|s2R))

⊠ ((tLR|s2L ⊗ tRR|s2R)⊗ (tLR|s1L ⊗ tRR|s1R)) presplit

These are the correct slices, by rearranging the tensors and reconstructing the input preslices.

Lemma B.2.14. Slices can be conatenated:

Φ ⊢ sL ⊠ sR presplit

ΦsL ⊢ tL preslice ΦsR ⊢ tR preslice

Φ ⊢ tL ⊗ tR preslice
−−−−−−−−−−−−−−−−−−−

Proof. By induction on the presplit. The ϵL and ϵR flags have no effect on the available pure
preslices, so are omitted when describing the cases below.

• c ≺ Φ ⊢ ∅ ⊠∅ presplit: Then the only possibility is tL ≡ tR ≡ ∅ and ∅ is also preslice in
c ≺ Φ.

• c ≺ Φ ⊢ c⊠∅ presplit: Only two possibilities. If tL ≡ tR ≡ ∅ then c ≺ Φ ⊢ ∅ preslice in the
conclusion. And if tL ≡ c and tR ≡ ∅, then c ≺ Φ ⊢ c preslice in the conclusion.

• c ≺ Φ ⊢ sL ⊠ sR presplit where Φ ⊢ sL ⊠ sR presplit: Then by induction Φ ⊢ tL ⊗ tR preslice,
and so also c ≺ Φ ⊢ tL ⊗ tR preslice.
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• Φ1, Φ2 ⊢ s1L ⊠ s1R presplit where Φ1 ⊢ s1L ⊠ s1R presplit: Then inductively Φ1 ⊢ tL⊗ tR preslice,
and so also Φ1, Φ2 ⊢ tL ⊗ tR preslice.

• Φ1 ⊗ Φ2 ⊢ (s1L ⊗ s2L) ⊠ (s1R ⊗ s2R) presplit where Φ1 ⊢ s1L ⊠ s1R presplit and Φ2 ⊢ s2L ⊠

s2R presplit: Then the input slices are

(Φ1 ⊗Φ2)
s1L⊗s2L ⊢ tL preslice

(Φ1 ⊗Φ2)
s1R⊗s2R ⊢ tR preslice

whose palettes are equal to Φ1
s1L ⊗Φ2

s2L and Φ1
s1R ⊗Φ2

s2R by definition. Now use Lemma B.2.6
to find preslices

Φ1
s1L ⊢ tL|Φ1

s1L preslice

Φ2
s2L ⊢ tL|Φ2

s2L preslice

Φ1
s1R ⊢ tR|Φ1

s1R preslice

Φ2
s2R ⊢ tR|Φ2

s2R preslice

Inductively

Φ1 ⊢ tL|Φ1
s1L ⊗ tR|Φ1

s1R preslice

Φ2 ⊢ tL|Φ2
s2L ⊗ tR|Φ2

s2R preslice

and so

Φ1 ⊗Φ2 ⊢ (tL|s1L ⊗ tR|s1R)⊗ (tL|s2L ⊗ tR|s2R) preslice

Finally, by symmetry and the equation of Lemma B.2.6, this preslice is equal to tL ⊗ tR.

The remaining rules follow by symmetry from one of the above.

Lemma B.2.15. Slices under another slice can be concatenated:

Φ ⊢ sL ⊠ sR presplit

ΦsL ⊢ vL presliceϵ ΦsR ⊢ vR presliceϵ

(ΦsL)vL ⊢ tL preslice (ΦsR)vR ⊢ tR preslice

ΦvL⊗vR ⊢ tL ⊗ tR preslice
−−−−−−−−−−−−−−−−−−−−−−−−

This is the ‘under a slice’ version of the ordinary tensor constructor for slices.

Proof. By induction on the split and sL and sR, using Lemma B.2.6 on vL and vR in the case that Φ
is a tensor palette.

Lemma B.2.16.

Φ ⊢ s preslice

Φs ⊢ s preslice
−−−−−−−−

Φ ⊢ s presliceϵ

Φs⊗ϵ ⊢ s presliceϵ

−−−−−−−−−
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Proof. For pure preslices, induction on s:

• ∅ preslice: The preslice ∅ is well-formed in any context.

• c preslice: Then Φc has the form c ≺ Ψ for some Ψ, and c ≺ Ψ ⊢ c preslice.

• c ≺ Φ ⊢ s preslice where Φ ⊢ s preslice: By induction, because in this case (c ≺ Φ)s ≡ Φs.

• Φ1, Φ2 ⊢ s preslice where Φ1 ⊢ s preslice: By induction, because in this case (Φ1, Φ2)s ≡ Φ1
s.

• ΦL ⊗ΦR ⊢ sL ⊗ sR preslice where ΦL ⊢ sL preslice and ΦR ⊢ sR preslice: By induction

ΦL
sL ⊢ sL preslice

ΦR
sR ⊢ sR preslice

There are cases depending on whether sL and sR are equal to ∅.

– If neither are, then

ΦL
sL ⊗ΦR

sR ⊢ sL ⊗ sR preslice

and (ΦL ⊗ΦR)
sL⊗sR ≡ ΦL

sL ⊗ΦR
sR by definition.

– If sL ≡ ∅ then (ΦL ⊗ΦR)
sL⊗sR ≡ ΦR

sR and and sL ⊗ sR ≡ sR, so ΦR
sR ⊢ sR preslice is the

required preslice.

– If sL ≡ sR ≡ ∅ then the result is ∅ which is well-formed in any context.

The remaining cases follow by symmetry.
For preslices, by definition Φs⊗1 ≡ (Φs ⊗ 1). The previous shows that Φs ⊢ s preslice, and so

also Φs ⊗ 1 ⊢ s preslice, and then Φs ⊗ 1 ⊢ s⊗ 1 preslice.

Lemma B.2.17.

Φ ⊢ s preslice

Φs ⊢ s ⊠∅ presplit Φs ⊢ ∅⊠ s presplit
−−−−−−−−−−−−−−−−−−−−−−

Φ ⊢ s presliceϵ

Φs ⊢ s ⊠∅ presplit Φs ⊢ ∅⊠ s presplit
−−−−−−−−−−−−−−−−−−−−−−

Proof. Induction on s, as in Lemma B.2.16:

• ∅ preslice: Then Φ∅ ≡ ∅, and ∅ ⊢ ∅⊠∅ presplit.

• c preslice: Then Φc has the form c ≺ Ψ for some Ψ, and so c⊠∅ presplit.

• c ≺ Φ ⊢ s preslice where Φ ⊢ s preslice: By induction, because in this case (c ≺ Φ)s ≡ Φs.

• Φ1, Φ2 ⊢ s preslice where Φ1 ⊢ s preslice: By induction, because in this case (Φ1, Φ2)s ≡ Φ1
s.

• ΦL ⊗ΦR ⊢ sL ⊗ sR preslice where ΦL ⊢ sL preslice and ΦR ⊢ sR preslice: By induction

ΦL
sL ⊢ sL ⊠∅ presplit

ΦR
sR ⊢ sR ⊠∅ presplit

There are cases depending on whether sL and sR are equal to ∅.
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– If neither are, then

ΦL
sL ⊗ΦR

sR ⊢ (sL ⊗ sR)⊠ (∅⊗∅) presplit

and (ΦL ⊗ΦR)
sL⊗sR ≡ ΦL

sL ⊗ΦR
sR and ∅⊗∅ ≡ ∅ by definition.

– If sL ≡ ∅ then (ΦL ⊗ΦR)
sL⊗sR ≡ ΦR

sR and and sL ⊗ sR ≡ sR, so ΦR
sR ⊢ sR ⊠∅ presplit

is the required presplit.

– If sL ≡ sR ≡ ∅ then we have ∅ ⊢ ∅⊠∅ presplit.

The remaining cases follow by symmetry.
For s a preslice, by definition Φs⊗1 ≡ (Φs ⊗ 1). The previous shows that Φs ⊢ s ⊠∅ presplit,

and combining this with the split 1 ⊢ 1 ⊠∅ presplit gives

Φs ⊗ 1 ⊢ (s⊗ 1)⊠∅ presplit

as required.

B.2.1 Marking

Theorem B.2.18. Marking on slices is admissible.

MARK
(s ≺ Ξ){Φ} ⊢ s preslice

(s ≺ Ξ){↓1} ⊢ smΦ presliceϵ

−−−−−−−−−−−−−−− MARK
(s ≺ Ξ){Φ} ⊢ s presliceϵ

(s ≺ Ξ){↓1} ⊢ smΦ presliceϵ

−−−−−−−−−−−−−−−

MARK
(s ≺ Ξ){Φ} ⊢ s slice

(s ≺ Ξ){↓1} ⊢ smΦ slice
−−−−−−−−−−−−−

Proof. Induction on the spot.

• Φ{Φ} spot: Then smΦ ≡ 1 because all colours in s are marked, and we have 1 ⊢ 1 presliceϵ.

• c ≺ Ξ{Φ} spot: Two subcases:

– Ξ{Φ} ⊢ s preslice: Then inductively Ξ{↓1} ⊢ smΦ presliceϵ which we can weaken with c.

– s ≡ c: Then smΦ ≡ c and indeed c ≺ Ξ{↓1} ⊢ c presliceϵ.

• Ξ{Φ}, Ξ′ spot: Two subcases:

– Ξ{Φ} ⊢ s preslice: Then inductively Ξ{↓1} ⊢ smΦ presliceϵ which we can weaken with
Ξ′.

– Ξ′ ⊢ s preslice: Then s does not contain any colours from Φ and so s ≡ smΦ, and we can
weaken with Ξ{↓1}.

• Ξ{Φ} ⊗ Ξ′: Then preslice is of the form s⊗ s′. Inductively, Ξ{↓1} ⊢ smΦ presliceϵ, and so
Ξ{↓1} ⊗ Ξ′ ⊢ smΦ ⊗ s′ presliceϵ, and smΦ ⊗ s′ ≡ (s⊗ s′)mΦ because colours in Φ do not occur
in s′.
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Lemma B.2.19. If Ξ{Φ} spot and Ξ ⊢ s slice with Φ contained in s, then

(s ≺ Ξ)s{↓1} ≡ (s ≺ Ξ){↓1}smΦ

Proof. Note that we have implicitly used Lemma B.2.1 to know that (s ≺ Ξ)s{Φ} spot.
Induction on the spot and the slice. The crucial case is when we reach the slice c so that Ξc

contains Φ. Then cmΦ ≡ c, and indeed

(s ≺ Ξ)c{↓1} ≡ (s ≺ Ξ){↓1}c

B.2.2 Mark-Weakening

Theorem B.2.20. Mark-weakening is admissible on slices and splits.

MARKWK

(s ≺ Ξ){1} spot
(s ≺ Ξ){1} ⊢ s slice

(s ≺ Ξ){↓Φ} ⊢ s slice
−−−−−−−−−−−− MARKWK

(s ≺ Ξ){1} spot
(s ≺ Ξ){1} ⊢ sL ⊠ sR presplit

(s ≺ Ξ){↓Φ} ⊢ sL ⊠ sR presplit
−−−−−−−−−−−−−−−−

B.2.3 Cartesian Substitution

Theorem B.2.21. Substitution on slices is admissible.

SUBST
Φ ⊢ κ : Ψ Ψ ⊢ t preslice

Φ ⊢ t[κ] presliceϵ

−−−−−−−−−−−−−− SUBST
Φ ⊢ κ : Ψ Ψ ⊢ c colour

Φ ⊢ c[κ] slice
−−−−−−−−−−−−−−

SUBST
Φ ⊢ κ : Ψ Ψ ⊢ t slice

Φ ⊢ t[κ] slice
−−−−−−−−−−−−−

Note that substitution into a pure preslice can result in a preslice, because each individual
colour may be replaced by a preslice containing 1.

Proof. When t is a pure preslice we proceed by induction on the structure of Ψ. It is enough to show
that the underlying pure preslice of t[κ] is well-formed, because the 1 bit has no effect on typing.

• ∅ and ∅i: The only pure preslices of these palettes are ∅, and ∅[κ] ≡ ∅ is well-formed in
any context.

• Ψ1, Ψ2: Then the substitution is of the form κ1, κ2. Without loss of generality, Ψ1 ⊢ t presliceϵ

and by induction Φ ⊢ t[κ1] presliceϵ. This is equal to t[κ1, κ2] because variables in κ2 do not
occur in t.
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• ΨL ⊗ΨR: Then the substitution is of the form κL ⊗ κR for

Φ ⊢ sL ⊠ sR presplit

ΦsL ⊢ κL : ΨL

ΦsR ⊢ κR : ΨR

and the slice is of the form tL ⊗ tR for

ΨL ⊢ tL presliceϵ

ΨR ⊢ tR presliceϵ

Inductively,

ΦsL ⊢ tL[κL] presliceϵ

ΦsR ⊢ tR[κR] presliceϵ

and by Lemma B.2.14, Φ ⊢ tL[κL]⊗ tR[κR] presliceϵ. This is equal to (tL⊗ tR)[κL⊗ κR] because
variables in κR do not occur in tL and vice versa.

• c ≺ Ψ: Then the substitution is of the form (s/c ≺ κ) for Φ ⊢ s slice. There are two subcases:

– t ≡ c: Then c[s/c ≺ κ] ≡ u(s), which we know is well-formed.

– Ψ ⊢ t presliceϵ: Then by induction, Φu(s) ⊢ t[κ] presliceϵ. Applying Lemma B.2.14
together with ∅ ⊢ ∅ preslice gives Φ ⊢ t[κ] presliceϵ, and t[κ] ≡ t[s/c ≺ κ] because t ̸≡ c.

Theorem B.2.22. Substitution on slices under another slice is admissible.

SUBST/COD

Ψ ⊢ v preslice

Φ ⊢ κ : Ψ Ψv ⊢ t preslice

Φv[κ] ⊢ t[κ] presliceϵ

−−−−−−−−−−−−−−− SUBST/COD

Ψ ⊢ v preslice

Φ ⊢ κ : Ψ Ψv ⊢ t slice

Φv[κ] ⊢ t[κ] slice
−−−−−−−−−−−−−

Proof. Similar to the previous, induction on Ψ and v.

• ∅ and ∅i: The only possible v is v ≡ ∅, and then Ψ∅ ≡ ∅ and again the only possible t is ∅.

• Ψ1, Ψ2: Then the substitution is of the form κ1, κ2. Without loss of generality, Ψ1 ⊢ v preslice,
so Ψ1

v ⊢ t preslice. Inductively Φv[κ1] ⊢ t[κ1] presliceϵ, and t[κ1] ≡ t[κ1, κ2].

• ΨL ⊗ΨR: Then the substitution is of the form κL ⊗ κR for

Φ ⊢ sL ⊠ sR presplit

ΦsL ⊢ κL : ΨL

ΦsR ⊢ κR : ΨR
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and v is of the form vL ⊗ vR with

ΨL ⊢ vL preslice

ΨR ⊢ vR preslice

There are subcases, depending on whether vL and vR are ∅.

– With vL and vR both non-trivial, then t is of the form tL ⊗ tR with

ΨL
vL ⊢ tL preslice

ΨR
vR ⊢ tR preslice

Inductively

(ΦsL)vL[κL] ⊢ tL[κL] presliceϵ

(ΦsR)vR[κR] ⊢ tR[κR] presliceϵ

and by Lemma B.2.15,

ΦvL[κL]⊗vR[κR] ⊢ tL[κL]⊗ tR[κR] presliceϵ

Finally, vL[κL]⊗ vR[κR] ≡ (vL ⊗ vR)[κ] ≡ v[κ] and tL[κL]⊗ tR[κR] ≡ (tL ⊗ tR)[κ] ≡ t[κ].

– If only vL is non-trivial, then

ΨL
vL ⊢ t preslice

and inductively

(ΦsL)vL[κL] ⊢ t[κL] presliceϵ

For the palette, (ΦsL)vL[κL] ≡ ΦvL[κL] by Lemma B.2.9. And vL[κL] ≡ vL[κL] ⊗ ∅ ≡
vL[κL]⊗ vR[κR] ≡ v[κ], and t[κL] ≡ t[κ] because t contains no colours in sR.

– If only vR is non-trivial, apply the symmetric argument.

– If both vL ≡ vR ≡ ∅ then also t ≡ ∅.

• c ≺ Ψ: Then the substitution is of the form (s/c ≺ κ) for Φ ⊢ s slice and Φu(s) ⊢ κ : Ψ. There
are two subcases:

– v ≡ c: Then c ≺ Ψ ⊢ t preslice, and so we can apply ordinary substitution to get
Φu(s) ⊢ t[κ] presliceϵ, and c[s/c ≺ κ] ≡ u(s) by definition.

– Ψ ⊢ v preslice: Then Ψv ⊢ t preslice, and by induction, (Φu(s))v[κ] ⊢ t[κ] presliceϵ. Ap-
plying Lemma B.2.15 together with ∅ ⊢ ∅ preslice gives Φv[κ] ⊢ t[κ] presliceϵ. Finally
v[κ] ≡ v[s/c ≺ κ] and t[κ] ≡ t[s/c ≺ κ] because v ̸≡ c and t ̸≡ c.
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Lemma B.2.23. Substitution is admissible on unit labels.

Φ ⊢ κ : Ψ Ψ ⊢ i unit

Ψ ⊢ i[κ] unit

Proof. By induction on Ψ.

Theorem B.2.24. Substitution on splits is admissible.

SUBST
Φ ⊢ κ : Ψ Ψ ⊢ sL ⊠ sR presplit

Φ ⊢ sL[κ]⊠ sR[κ] presplit
−−−−−−−−−−−−−−−−−− SUBST

Φ ⊢ κ : Ψ Ψ ⊢ sL ⊠ sR split

Φ ⊢ sL[κ]⊠ sR[κ] split
−−−−−−−−−−−−−−−−

Proof. For presplits, induction on the derivation of the presplit:

• ∅ ⊢ (∅⊗ ϵL)⊠ (∅⊗ ϵR) presplit: There are no substitutions into ∅.

• Ψ ⊢ (∅⊗ ϵL) ⊠ (∅⊗ ϵR) presplit with ϵL ≡ ⊤ or ϵR ≡ ⊤: Then also Φ ⊢ (∅⊗ ϵL) ⊠ (∅⊗
ϵR) presplit.

• c ≺ Ψ ⊢ (c ⊗ ϵL) ⊠ (∅ ⊗ ϵR) presplit: Then the substitution has the form (s/c ≺ κ) for
Φ ⊢ s slice, and such that Φ ⊢ u(s)⊠∅ presplit.

By definition, (c⊗ ϵL)[s/c ≺ κ] ≡ (u(s)⊗ ϵL). Lemma B.2.11 twice then gives Φ ⊢ (u(s)⊗
ϵL)⊠ (∅⊗ ϵR) presplit as required.

• c ≺ Ψ ⊢ sL ⊠ sR presplit where Ψ ⊢ sL ⊠ sR presplit: Then the substitution has the form
(s/c ≺ κ) for Φu(s) ⊢ κ : Ψ, and inductively Φu(s) ⊢ sL[κ] ⊠ sR[κ] presplit. Finally Φ ⊢ sL[κ] ⊠

sR[κ] presplit by applying interchange (Lemma B.2.13) on this split and ∅ ⊢ ∅⊠∅ presplit.

• Ψ1, Ψ2 ⊢ s1L ⊠ s1R presplit where Ψ1 ⊢ s1L ⊠ s1R presplit: The substitution is of the form κ1, κ2

with Φ ⊢ κ1 : Ψ1. Inductively Φ ⊢ s1L[κ1] ⊠ s1R[κ1] presplit, and s1L[κ1] ≡ s1L[κ1, κ2] and
s1R[κ1] ≡ s1R[κ1, κ2] because Ψ1 does not occur in either of the slices.

• Ψ1 ⊗ Ψ2 ⊢ (s1L ⊗ s2L) ⊠ (s1R ⊗ s2R) presplit where Ψ1 ⊢ s1L ⊠ s1R presplit and Ψ2 ⊢ s2L ⊠

s2R presplit: Then the substitution is of the form κL ⊗ κR for

Φ ⊢ sL ⊠ sR presplit

ΦsL ⊢ κL : ΨL

ΦsR ⊢ κR : ΨR

Inductively

ΦsL ⊢ s1L[κL]⊠ s1R[κL] presplit

ΦsR ⊢ s2L[κR]⊠ s2R[κR] presplit

Applying Lemma B.2.13 gives

Φ ⊢ (s1L[κL]⊗ s2L[κR])⊠ (s1R[κL]⊗ s2R[κR]) presplit
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Now s1L does not contain variables from κR, and similarly for the others, so these slices are
equal to

Φ ⊢ (s1L ⊗ s2L)[κL ⊗ κR]⊠ (s1R ⊗ s2R)[κL ⊗ κR] presplit

as required.

Theorem B.2.25. Substitution on slices at a spot is admissible.

SUBST/SPOT

Ξ{t ≺ Φ, Ψ, . . . } spot
t ≺ Φ ⊢ κ : Ψ Ξ{t ≺ Φ, Ψ, . . . } ⊢ s slice

Ξ{↓t ≺ Φ, . . . } ⊢ s[κ] slice
−−−−−−−−−−−−−−−−−−−−−−−

SUBST/COD

Ψ ⊢ v preslice Ξ{Ψv} spot
t ≺ Φ ⊢ κ : Ψ Ξ{Ψv} ⊢ s slice

Ξ{↓(t ≺ Φ)v[κ]} ⊢ s[κ] slice
−−−−−−−−−−−−−−−−−− SUBST/DOM

Φ ⊢ w preslice Ξ{Φw} spot
t ≺ Φ ⊢ κ : Ψ Ξ{Φw} ⊢ s slice

Ξ{Φw} ⊢ s[κ] slice
−−−−−−−−−−−−−−−−−−

SUBST/MARKED
t ≺ Φ ⊢ κ : Ψ Ξ ⊢ s slice

Ξ ⊢ s[κ] slice
−−−−−−−−−−−−−−−

Proof. The idea is: we do induction until we reach the spot and then apply the previous substitution
rule. First SUBST/SPOT, induction on the spot:

• (t ≺ Φ, Ψ){t ≺ Φ, Ψ} spot: Two subcases:

– Ψ ⊢ s slice: Then the actual substitution rule (Theorem B.2.21) gives t ≺ Φ ⊢ s[κ] slice.

– t ≺ Φ ⊢ s slice: Then s ≡ s[κ] is already the desired slice.

• (t ≺ Ξ, Ξ′){t ≺ Φ, . . . } spot where Ξ{Φ, . . . }, Ξ′ spot: Two subcases:

– t ≺ Ξ ⊢ s slice: Then inductively (t ≺ Ξ){↓t ≺ Φ} ⊢ s[κ] slice, which can be weakened
to (t ≺ Ξ){↓t ≺ Φ}, Ξ′ ⊢ s[κ] slice

– Ξ′ ⊢ s slice: Then s ≡ s[κ] is already the desired slice.

• c ≺ Ξ{t ≺ Φ, . . . } spot: Then inductively Ξ{↓t ≺ Φ, . . . } ⊢ s[κ] slice, which can be weakened
to c ≺ Ξ{↓t ≺ Φ, . . . } ⊢ s[κ] slice.

• Ξ{t ≺ Φ, . . . }, Ξ′ spot: Then inductively Ξ{↓t ≺ Φ, . . . } ⊢ s[κ] slice, which can be weakened
to Ξ{↓t ≺ Φ, . . . }, Ξ ⊢ s[κ] slice.

• Ξ{t ≺ Φ, . . . } ⊗ Ξ′ spot: Then the slice has an underlying preslice of the form sL ⊗ sR for

Ξ{t ≺ Φ, Ψ, . . . } ⊢ sL presplit

Ξ′ ⊢ sR presplit

Inductively Ξ{↓t ≺ Φ, . . . } ⊢ sL[κ] presplit, and (sL ⊗ sR)[κ] ≡ sL[κ]⊗ sR because sR does not
contain colours in Ψ.
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The rule SUBST/COD is similar, in the base case we have Ψv ⊢ s slice and so apply Theorem B.2.22
instead of Theorem B.2.21.

The final two rules hold because in both cases s contains no colours in Ψ.

Theorem B.2.26. Substitution on splits is admissible, with rules analogous to Theorem B.2.25.

Proof. By induction with the same structure as Theorem B.2.25.

Lemma B.2.27. Suppose Φ ⊢ κ : Ψ and Ξ{Ψ} spot. If Ξ ⊢ s slice intersects Ψ, then (s ∩ Ψ)[κ] ≡
(s[κ] ∩Φ).

Proof. Induction on the spot and the slice s.

B.2.4 Slice Intersection

Definition B.2.28. The intersection of two pure preslices

Φ ⊢ s preslice Φ ⊢ t preslice

Φ ⊢ s ∩ t preslice
−−−−−−−−−−−−−−−−

defined by induction on Φ:

• 1 palette, ∅ palette and ∅i palette: The only pure preslice is ∅ preslice and define ∅∩∅ :≡ ∅.

• Φ1, Φ2 palette: If Φ1 ⊢ s preslice and Φ1 ⊢ t preslice, then induct and weaken. If Φ1 ⊢ s preslice

and Φ2 ⊢ t preslice, then define s ∩ t :≡ ∅. The other cases are similar by symmetry.

• Φ1 ⊗Φ2 palette: Define (sL ⊗ sR) ∩ (tL ⊗ tR) :≡ (sL ∩ tL)⊗ (sR ∩ tR).

• c ≺ Φ palette: Define

s ∩∅ :≡ ∅
∅∩ s :≡ ∅
s ∩ c :≡ s

c∩ s :≡ s

c∩ c :≡ c

This definition requires the preslices to be well-formed, as the raw syntax of preslices does
not give enough information to know what is in the palette under a particular colour label. For
example, in palette p ≺ r⊗ b palette, the raw syntax does not tell us that p∩ r ≡ r rather than p.

Lemma B.2.29. If Φ ⊢ s preslice and Φs ⊢ t preslice then s ∩ t ≡ t, where t has been weakened to Φ using
Lemma B.2.8.

Proof. By induction on s and the definition of slice intersection.
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Lemma B.2.30. For Φ ⊢ s preslice and Φ ⊢ t preslice,

c ∈ s ∩ t iff c ∈ s and c ∈ t

for any Φ ⊢ c colour.

Proof. Induction on the palette Φ.

Lemma B.2.31. For

t ≺ Φ ⊢ κ : Ψ

Ψ ⊢ s preslice

Ψ ⊢ t preslice

we have
c ∈ (s ∩ t)[κ] iff c ∈ s[κ] and c ∈ t[κ]

for any t ≺ Φ ⊢ c colour.

Proof. By induction on Ψ.

It is not true that (s∩ t)[κ] ≡ (s[κ]∩ t[κ]) because it is possible for s∩ t to lie in different cartesian
bunches that are contracted together by the substitution.

Lemma B.2.32. If Ξ{Φv} spot and s intersects Φv, then Ξs{Φv∩s} spot.

Proof. By induction on the spot and the pure preslice s.

Lemma B.2.33. If Φ ⊢ κ : Ψ and Ξ ⊢ s slice and Ξ{Ψv} spot, then Ξs{↓Φ(v∩s)[κ]} ≡ (Ξ{↓Φv[κ]})s[κ]

Proof. Induction on the spot and the slice s. Once we reach Ψv ⊢ s slice, we know Φv[κ] ⊢ s[κ] preslice
by SUBST/COD, and then (Φv[κ])s[κ] ≡ Φs[κ] ≡ Φ(v∩s)[κ] because v ∩ s ≡ s.

Lemma B.2.34. If ΦsL ⊗ΦsR ⊢ v preslice and ΦsL ⊗ΦsR ⊢ w preslice, then

c ∈ (v ∩ w)[(t ≺ sL ⊠ sR/t′)] iff c ∈ v[(t ≺ sL ⊠ sR/t′)] and c ∈ w[(t ≺ sL ⊠ sR/t′)]

for any t ≺ Φ ⊢ c colour.

Proof. If c is the top colour of sL then v and w must be of the form c⊗ v′ and c⊗ w′, and then
certainly c ∈ v ∩ w. If c is contained in ΦsL then we use Lemma B.2.30. The other cases are
similar.

Lemma B.2.35. If Φ ⊢ sL ⊠ sR split and Ξ ⊢ t slice and Ξ{(ΦsL ⊗ΦsR)v} spot, then

Ξt{↓Φ(v∩t)[(t≺sL⊠sR/t′)]} ≡ (Ξ{↓Φv[(t≺sL⊠sR/t′)]})t[(t≺sL⊠sR/t′)]

Proof. Induction on the spot and the slice t. Once we reach (ΦsL ⊗ΦsR)v ⊢ t slice, we consider cases
on the pure preslice v. For example, if v ≡ ⌜sL⌝, then we have two subcases. When t ≡ ⌜sL⌝, we
have v ∩ t ≡ ⌜sL⌝ also, and the result follows by Lemma B.2.16. Otherwise, we have v ∩ t ≡ t and
the result follows by Lemma B.2.8. The other cases are similar.
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B.2.5 Other

Lemma B.2.36. If Ξ{t ≺ Φ, . . . } spot and t ≺ Φ ⊢ c colour, then Ξc is a cartesian weakening of Φc.

Proof. By induction on the spot, until we reach the cartesian bunch containing t ≺ Φ, . . . . Then
either c is equal to t, in which case (t ≺ Φ, . . . )c ≡ t ≺ Φ, . . . is certainly a cartesian weakening of
t ≺ Φ, or c ∈ Φ, in which case (t ≺ Φ, . . . )c ≡ Φc exactly.

Lemma B.2.37.

ΦsL ⊗ΦsR ⊢ w presliceϵ

t ≺ Φ ⊢ sL ⊠ sR presplit

and c ∈ w then c ∈ w[(t ≺ sL ⊠ sR/t′)].

Proof. By induction on the presplit until we reach a colour label containing the colour c.

Lemma B.2.38. If s ≺ Ξ{t′ ≺ Ψ} spot then the top colour of s ≺ Ξ{↓t ≺ Φ} spot is st↔t′ .

Proof. If the spot is immediately at the top of the palette, then s ≡ t′, and then st↔s ≡ t, which is
the top colour of t ≺ Φ. Otherwise, the top colour of the resulting palette is unchanged, and indeed
st↔t′ ≡ s

B.3 Contexts

B.3.1 Palette Weakening

Lemma B.3.1. Palette weakening of contexts is admissible.

WK-PAL-CTX
Φ | Γ ctx

Ξ{Φ} | Γ ctx
−−−−−−−

Proof. Considering one variable at a time, for ordinary labelled variables xc : A we have (Ξ{Φ})c ≡
Φc, and so the type A remains well-formed. For marked variables xc : A, the type c | Γ ⊢
A type used in the premise is exactly what is required to extend the context with xc : A in the
conclusion.

Lemma B.3.2. Cartesian palette weakening for all judgements is admissible.

WK-PAL-CART
Ξ{Φ} | Γ ⊢ J

Ξ{Φ, Ψ} | Γ ⊢ J
−−−−−−−−−

Proof. For slices, splits and terms, induction on the derivation. For contexts and context extensions,
we may consider one variable at a time, applying the rule to the type.
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B.3.2 Context Weakening

Lemma B.3.3. Weakening a term by a single variable is admissible.

WK
Φ | Γ, Γ′ ⊢ J

Φ | Γ, xc : A, Γ′ ⊢ J
−−−−−−−−−−− WK-MARKED

Φ | Γ, Γ′ ⊢ J

Φ | Γ, xc : A, Γ′ ⊢ J
−−−−−−−−−−−

Proof. Induction on derivations. For WK, encountering a splitting rule may require a use of WK-
MARKED, if the variable to be added is not contained in the slice used in the premise of the splitting
rule.

Lemma B.3.4. Weakening a term by a context extension is admissible.

WK-EXT
Φ | Γ, Γ′′ ⊢ J

Φ | Γ, Γ′, Γ′′ ⊢ J
−−−−−−−−−

Proof. Repeated application of WK and WK-MARKED.

B.3.3 Recolouring

RECOLOUR
t′ ≺ Φ | Γ ⊢ J

t ≺ Φ | Γt↔t′ ⊢ J t↔t′
−−−−−−−−−−−

Or more generally

RECOLOUR
Ξ{t′ ≺ Φ} | Γ ⊢ J

Ξ{t ≺ Φ} | Γt↔t′ ⊢ J t↔t′
−−−−−−−−−−−−−

Theorem B.3.5. Recolouring is admissible on terms.

Proof. Straightforward induction on derivations. In the cases for VAR-ROUNDTRIP and VAR-
MARKED, we use Lemma B.1.8 to show that the result has the correct type, and in the splitting rules
we us Lemma B.1.10 when the chosen slice does not contain the colour being replaced.

Lemma B.3.6. The colour label on a marked variable can be changed, and this is silent in the judgement.

Φ | Γ, xc′ : A, Γ′ ⊢ J

Φ | Γ, xc : Ac↔c′ , Γ′ ⊢ J
−−−−−−−−−−−−

Proof. By induction on J . The important case is VAR-ZERO. If

c′ | Γ ⊢ A type

t ≺ Φ | Γ, xc′ : A, Γ′ ⊢ x : At↔c′

then also

c | Γ ⊢ Ac↔c′ type

t ≺ Φ | Γ, xc : Ac↔c′ , Γ′ ⊢ x : (Ac↔c′)t↔c

and (Ac↔c′)t↔c ≡ At↔c′ by Lemma B.1.8.
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B.3.4 Filtering

Theorem B.3.7. Filtering of contexts, telescopes and context extensions is admissible.

FILTER
Φ ⊢ s slice Φ | Γ ctx

Φs | Γs ctx
−−−−−−−−−−−−− FILTER

Ψ ⊢ s preslice t ≺ Φ | Γ ⊢ Ψ | Ω tele

t | Γ ⊢ Ψs | Ωs tele
−−−−−−−−−−−−−−−−−−−−−

FILTER
Ξ{t ≺ Φ, . . . } ⊢ s slice (s ≺ Ξ){Φ} | Γ; Γ′ ext

((s ≺ Ξ){Φ})s | Γs; Γ′s ext
−−−−−−−−−−−−−−−−−−−−−−−−−−

Proof. Each of these may be proved one variable at a time. For contexts,

• xc : A is unmarked: Then the context was formed by

Φc | Γc ⊢ A type

Φ | Γ, xc : A ctx

There are two subcases:

– c ∈ s: Then Φc ≡ (Φs)c by Lemma B.2.8 and Γc ≡ (Γs)c by Lemma B.3.9, so we have
(Φs)c | (Γs)c ⊢ A type and can re-form the context extension.

– c /∈ s: Then marking A gives c | Γ ⊢ A type, and Γ ≡ Γs by idempotence, so we can
re-form the context extension Φs | Γs, xc : A ctx.

• xc : A is marked: Then the context was formed by

c | Γ ⊢ A type

Φ | Γ, xc : A ctx

but Γ ≡ Γs by idempotence, so c | Γs ⊢ A type and we can re-form the context Φs | Γs, xc :
A ctx.

Telescopes and context extensions are similar.

Lemma B.3.8. (Γs)t ≡ Γ(s∩t)

Proof. By Lemma B.2.30 operating one variable at a time.

Corollary B.3.9. (Γs)t ≡ Γt when Φs ⊢ t preslice

Proof. Combining Lemma B.3.8 with Lemma B.2.29.

Lemma B.3.10. (Γs[κ])t[κ] ≡ Γ(s∩t)[κ]

Proof. By Lemma B.2.31 operating one variable at a time.

Lemma B.3.11. (Γu[(t≺sL⊠sR/t′)])v[(t≺sL⊠sR/t′)] ≡ Γ(u∩v)[(t≺sL⊠sR/t′)]
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Proof. By Lemma B.2.34 operating one variable at a time.

Lemma B.3.12. If Φ ⊢ Γ ctx is weakened to Ξ{Φ} ⊢ Γ ctx and Ξ ⊢ s slice, then Γs ≡ Γs∩Φ.

Proof. All colour labels in Γ are in Φ, so for all such labels c ∈ s iff c ∈ s ∩Φ.

Lemma B.3.13. Γs ≡ Γ if s is fresh for Γ.

Proof. Checking one variable at a time, every unmarked xc : A becomes marked by Γs, because
c /∈ s.

Lemma B.3.14. If (s ≺ Ξ){Φ} | Γ; Γ′ ext and c does not contain Φ then Γ′c ≡ (Γ′mΦ|Γ)c.

Proof. Marked variables in Γ′ remain marked on both sides. For each unmarked variable xd : A in
Γ′, either

• d ∈ c, in which case x remains unmarked on both sides. We know (s ≺ Ξ)d also does not
contain Φ and so A ≡ AmΦ|Γ by Lemma B.3.17.

• d /∈ c, in which case x is marked on both sides.

B.3.5 Marking

MARK
t ≺ Φ | Γ ⊢ J

t | Γ ⊢ J
−−−−−−−−

The generalised form:

MARK

t ≺ Φ | Γ ctx (s ≺ Ξ){Φ} | Γ; Γ′ ext
(s ≺ Ξ){Φ} | Γ, Γ′ ⊢ J

(s ≺ Ξ){↓1} | Γ, Γ′mΦ|Γ ⊢ J mΦ|Γ
−−−−−−−−−−−−−−−−−−−−−

Lemma B.3.15. We can mark ‘under a slice’:

MARK/DISPATCH

(s ≺ Ξ){Φ} ⊢ s slice

(s ≺ Ξ){Φ}s | (Γ, Γ′)s ⊢ J

(s ≺ Ξ){↓1}smΦ | (Γ, Γ′mΦ|Γ)smΦ ⊢ J mΦ|Γ
−−−−−−−−−−−−−−−−−−−−−

Proof. We distinguish two cases:

• s intersects Φ: Then (s ≺ Ξ)s{Φs∩Φ} spot and (Γ, Γ′)s ≡ Γs∩Φ, Γ′s, and applying MARK gives

(s ≺ Ξ)s{↓1} | Γs∩Φ, (Γ′s)mΦ|Γ ⊢ J mΦ|Γ

For the palette, we know (s ≺ Ξ)s{↓1} ≡ (s ≺ Ξ){↓1}smΦ
by Lemma B.2.19, and for the

context Γs∩Φ, (Γ′s)mΦ|Γ ≡ (Γ, Γ′mΦ|Γ)smΦ
by idempotence on Γ and Lemma B.1.21 on Γ′. So

(s ≺ Ξ){↓1}smΦ | (Γ, Γ′mΦ|Γ)smΦ ⊢ J mΦ|Γ

as required.
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• s does not intersect Φ: Then s ≡ smΦ so (s ≺ Ξ){Φ}s ≡ (s ≺ Ξ){↓1}smΦ
. The input J is

already marked with respect to Φ, so J ≡ J mΦ|Γ by Lemma B.3.17. Similarly, Γ′ ≡ Γ′mΦ|Γ

and so already

(s ≺ Ξ){↓1}smΦ | (Γ, Γ′mΦ|Γ)smΦ ⊢ J mΦ|Γ

Theorem B.3.16. Marking is admissible on terms.

MARK
t ≺ Φ | Γ ⊢ a : A

t | Γ ⊢ a : A
−−−−−−−−−

Proof.

• VAR: Two cases:

– xs : A ∈ Γ: Because xs ∈ Γ, it must be the case that s ∈ (t ≺ Φ). The derivation is then

(s ≺ Ξ){Φ} | Γ1 ⊢ A type

(s ≺ Ξ){Φ} | Γ1, xs : A, Γ2, Γ′ ⊢ x : A

By induction,

(s ≺ Ξ){↓1} | Γ1 ⊢ AmΦ|Γ1 type

and so also

(s ≺ Ξ){↓1} | Γ1 ⊢ AmΦ|Γ1 type

by Lemma B.1.1.
By definition, Γ1, xs : A, Γ2 ≡ Γ1, xs : AmΦ|Γ1 , Γ2. Applying VAR-MARKED gives

(s ≺ Ξ){↓1} | Γ1, xs : A, Γ2, Γ′mΦ|Γ1,xs :A,Γ2 ⊢ x : AmΦ|Γ1

Finally, AmΦ|Γ1 ≡ AmΦ|Γ1,xs :A,Γ2 because x and Γ2 do not occur in A.

– xs : A ∈ Γ′: Then the derivation is

(s ≺ Ξ){Φ} | Γ, Γ′1 ⊢ A type

(s ≺ Ξ){Φ} | Γ, Γ′1, xs : A, Γ′2 ⊢ x : A

By induction also

(s ≺ Ξ){↓1} | Γ, Γ′1
mΦ|Γ ⊢ AmΦ|Γ type

and because (Γ′1, xs : A, Γ′2)
mΦ|Γ ≡ Γ′1

mΦ|Γ, xs : AmΦ|Γ, Γ′2
mΦ|Γ, we can reapply VAR.
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• VAR-ROUNDTRIP: Again, two cases:

– xc : A ∈ Γ: Then the derivation is

((s ≺ Ξ){Φ})c | Γ1
c ⊢ A type

(s ≺ Ξ){Φ} | Γ1, xc : A, Γ2, Γ′ ⊢ x : (AmΦ|Γ1)s↔c

Then in the conclusion, xc : AmΦ|Γ1 ∈ Γ1, xc : A, Γ2 by the definition of marking on
contexts. Applying VAR-MARKED gives

(s ≺ Ξ){↓1} | Γ1, xc : A, Γ2, Γ′mΦ|Γ1,xc:A,Γ2 ⊢ x : (AmΦ|Γ1)s↔c

because c | Γ1 ⊢ AmΦ|Γ1 type by Lemma B.1.1. This is of the required type, because

(AmΦ|Γ1)s↔c ≡ ((AmΦ|Γ1)s↔c)mΦ|Γ1,x,Γ2

by Lemma B.1.1 and Lemma B.1.9.

– xc : A ∈ Γ′: By assumption, c /∈ Φ, so xc : AmΦ|Γ in the context Γ, (Γ′1, xc : A, Γ′2)
mΦ|Γ is

unmarked in the conclusion. There are now two subcases:

* Φ ⊆ c: Then (s ≺ Ξ)c{Φ} spot and the derivation is

(s ≺ Ξ)c{Φ} | Γ, Γ′c ⊢ A type

(s ≺ Ξ){Φ} | Γ, Γ′1, xc : A, Γ′2 ⊢ x : As↔c

Inductively,

(s ≺ Ξ)c{↓1} | Γ, (Γ′c1 )
mΦ|Γ ⊢ AmΦ|Γ type

And by Lemma B.1.23, this context extension is equal to (Γ′mΦ|Γ
1 )c and by Lemma B.2.2,

the palette is ((s ≺ Ξ){↓1})c, so

((s ≺ Ξ){↓1})c | (Γ, Γ′mΦ|Γ
1 )c ⊢ AmΦ|Γ type

and we can reapply VAR-ROUNDTRIP to conclude

(s ≺ Ξ){↓1} | Γ, (Γ′1, xc : A, Γ′2)
mΦ|Γ ⊢ x : (AmΦ|Γ)s↔c

Finally, (AmΦ|Γ)s↔c ≡ (As↔c)mΦ|Γ because c is not in Φ.

* Φ ⊈ c: Then (s ≺ Ξ)c does not contain Φ at all, and Γc ≡ Γ by Lemma B.3.13, so the
derivation is

(s ≺ Ξ)c | Γ, Γ′c1 ⊢ A type

(s ≺ Ξ){Φ} | Γ, Γ′1, xc : A, Γ′2 ⊢ x : As↔c

And so also

(s ≺ Ξ{↓1})c | Γ, (Γ′mΦ|Γ
1 )c ⊢ AmΦ|Γ type
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because Γ′c1 ≡ (Γ′mΦ|Γ
1 )c by Lemma B.3.14 and A ≡ AmΦ|Γ by Lemma B.3.17. Reap-

plying VAR-ROUNDTRIP gives

s ≺ Ξ{↓1} | Γ, (Γ′1, xc : A, Γ′2)
mΦ|Γ ⊢ x : (AmΦ|Γ)s↔c

Finally, again (AmΦ|Γ)s↔c ≡ (As↔c)mΦ|Γ by Lemma B.1.9 because c is not in Φ.

• VAR-MARKED: We have xc : A ∈ Γ, Γ′ and so also xc : A ∈ Γ, Γ′mΦ|Γ in the conclusion. Two
cases:

– xc : A ∈ Γ: Then the derivation is

c | Γ1 ⊢ A type

(s ≺ Ξ){Φ} | Γ1, xc : A, Γ2, Γ′ ⊢ x : As↔c

Also c | Γ1 ⊢ A type by Lemma B.1.1 so we can reapply the rule, giving

(s ≺ Ξ){↓1} | Γ1, xc : A, Γ2, Γ′mΦ|Γ1,xc :A,Γ2 ⊢ x : As↔c

Finally As↔c ≡ (As↔c)mΦ|Γ1,x,Γ2 by Lemma B.3.17 because As↔c is well-typed in a com-
pletely marked context.

– xc : A ∈ Γ′: Suppose Γ′ ≡ Γ′1, xc : A, Γ′2. Then the derivation is

c | Γ, Γ′1 ⊢ A type

(s ≺ Ξ){Φ} | Γ, Γ′1, xc : A, Γ′2 ⊢ x : As↔c

and again Γ, Γ′1 ≡ Γ, Γ′mΦ|Γ
1 by Lemma B.1.1 so we can reapply the rule, giving

(s ≺ Ξ){↓1} | Γ, (Γ′1, xc : A, Γ′2)
mΦ|Γ ⊢ x : As↔c

Finally As↔c ≡ (As↔c)mΦ|Γ by Lemma B.3.17 because As↔c is well-typed in a completely
marked context.

• Π-FORM: Given inputs

(s ≺ Ξ){Φ} | Γ, Γ′ ⊢ A type

(s ≺ Ξ){Φ} | Γ, Γ′, xs : A ⊢ B type

inductively

(s ≺ Ξ){↓1} | Γ, Γ′mΦ|Γ ⊢ AmΦ|Γ type

(s ≺ Ξ){↓1} | Γ, Γ′mΦ|Γ, xs : AmΦ|Γ ⊢ BmΦ|Γ type

where for B we have added xs : A to the extension Γ′ used in the inductive case. Reapplying
the rule then gives

(s ≺ Ξ){↓1} | Γ, Γ′mΦ|Γ ⊢ ∏(x:AmΦ|Γ)B
mΦ|Γ type
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• ♮-FORM: The instance of the rule is

♮-FORM
s | Γ, Γ′ ⊢ A type

(s ≺ Ξ){Φ} | Γ, Γ′ ⊢ ♮A type

By idempotence, also

s | Γ, Γ′mΦ|Γ ⊢ A type

and A ≡ AmΦ|Γ because A is well-typed in a marked context. Reapplying the rule gives

(s ≺ Ξ){↓1} | Γ, Γ′mΦ|Γ ⊢ ♮AmΦ|Γ

as required.

• ⊗-INTRO: The inputs are

(s ≺ Ξ){Φ} ⊢ sL ⊠ sR split

(s ≺ Ξ){Φ}sL | (Γ, Γ′)sL ⊢ a : A⌜sL⌝↔t

(s ≺ Ξ){Φ}sR | (Γ, Γ′)sR ⊢ b : B[at↔⌜sL⌝/xt]⌜sR⌝↔t

Marking the split and applying MARK/DISPATCH to the terms, gives

(s ≺ Ξ){↓1} ⊢ sL
mΦ ⊠ sR

mΦ split

(s ≺ Ξ){↓1}sL
mΦ | (Γ, Γ′mΦ|Γ)sL

mΦ ⊢ amΦ|Γ : (A⌜sL⌝↔t)mΦ|Γ

(s ≺ Ξ){↓1}sR
mΦ | (Γ, Γ′mΦ|Γ)sR

mΦ ⊢ bmΦ|Γ : (B[at↔⌜sL⌝/xt]⌜sR⌝↔t)mΦ|Γ

To reapply the rule, we need that the type of bmΦ|Γ is is the right form to be paired with amΦ|Γ.
Lemma B.1.9 gives

(A⌜sL⌝↔t)mΦ|Γ ≡ (AmΦ|Γ)⌜sL⌝↔t

(B[at↔⌜sL⌝/xt]⌜sR⌝↔t)mΦ|Γ ≡ (B[at↔⌜sL⌝/xt]mΦ|Γ)⌜sR⌝↔t

and then

(B[at↔⌜sL⌝/xt]mΦ|Γ)⌜sR⌝↔t ≡ (BmΦ|Γ[amΦ|Γt↔⌜sL⌝/xt])⌜sR⌝↔t

by Lemma B.1.4 and Lemma B.1.1. And these types are finally of the form to reapply the rule:

(s ≺ Ξ){↓1} | Γ, Γ′mΦ|Γ ⊢ amΦ|Γ ⊗sLmΦ sRmΦ bmΦ|Γ :⃝∑ (x:AmΦ|Γ)B
mΦ|Γ

with⃝∑ (x:AmΦ|Γ) BmΦ|Γ ≡
(
⃝∑ (x:A) B

)mΦ|Γ
by definition.

• ⊸-FORM: The input types are

r | Γ, Γ′ ⊢ A type

p ≺ (s ≺ Ξ){Φ} ⊗ r | Γ, Γ′, xr : A ⊢ B type
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Now A is already marked with respect to Φ and Γ, so A ≡ AmΦ|Γ. And by idempotence,

Γ, Γ′ ≡ Γ, Γ′mΦ|Γ

so together,

r | Γ, Γ′mΦ|Γ ⊢ AmΦ|Γ type

Inductively

p ≺ (s ≺ Ξ){↓1} ⊗ r | Γ, Γ′mΦ|Γ, xr : AmΦ|Γ ⊢ BmΦ|Γ type

where we have extended (s ≺ Ξ){Φ} spot to p ≺ (s ≺ Ξ){Φ} ⊗ r spot and the context
extension Γ′ to Γ′, xr : A. Reapplying the rule gives

(s ≺ Ξ){↓1} | Γ, Γ′mΦ|Γ ⊢ ⃝∏ (xr :AmΦ|Γ)
pBmΦ|Γ

as required.

Lemma B.3.17. Terms in marked context are already dull.

t ≺ Φ | Γ ctx

s ≺ Ξ | Γ, Γ′ ⊢ J

J ≡ J mΦ|Γ
−−−−−−−−−

For this, we do need that J is well-typed so that variables from Γ are used in the ‘correct’ way:
a well-typed J can only use variables from Γ via VAR-ZERO, but raw terms might incorrectly use
them unmarked.

Proof. On slices, this immediate because none of the colour in Φ occur in s.
On terms, all typing rules monotonically add marks as one moves from the conclusion to the

premises, and so all variable uses happen in a context beginning with Γ. The only well-typed such
variable uses are already marked, and −mΦ|Γ has no effect on already marked variables uses.

B.3.6 Mark-Weakening

MARKWK
t | Γ ⊢ J

t ≺ Φ | Γ ⊢ J
−−−−−−−−

Lemma B.3.18. We can mark-weaken ‘under a slice’:

MARKWK/DISPATCH

(s ≺ Ξ){t ≺ 1, . . . } ⊢ s slice

t ≺ Φ | Γ ctx s ≺ Ξ{t ≺ 1, . . . } | Γ; Γ′ ext
(s ≺ Ξ){t ≺ 1, . . . }s | (Γ, Γ′)s ⊢ J

(s ≺ Ξ){↓t ≺ Φ, . . . }s | (Γ, Γ′)s ⊢ J
−−−−−−−−−−−−−−−−−−−−−−−−

where s has itself been mark-weakened in the conclusion by Theorem B.2.20.
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Proof. We distinguish two cases:

• s contains the spot {t ≺ 1, . . . }: Then (s ≺ Ξ)s{t ≺ 1, . . . } spot and (Γ, Γ′)s ≡ Γ, Γ′s, and
applying MARKWK gives

(s ≺ Ξ)s{↓t ≺ Φ, . . . } | Γ, Γ′s ⊢ J

And (s ≺ Ξ)s{↓t ≺ Φ, . . . } ≡ (s ≺ Ξ){↓t ≺ Φ, . . . }s by Lemma B.2.2.

• s does not contain {t ≺ 1, . . . }: Then already (s ≺ Ξ){t ≺ 1, . . . }s ≡ (s ≺ Ξ){↓t ≺ Φ, . . . }
and (Γ, Γ′)s ≡ Γ, Γ′s, so

(s ≺ Ξ){↓t ≺ Φ, . . . }s | Γ, Γ′s ⊢ J

Theorem B.3.19. Mark-weakening is admissible on terms.

MARKWK

t ≺ Φ | Γ ctx s ≺ Ξ{t ≺ 1, . . . } | Γ; Γ′ ext
s ≺ Ξ | Γ, Γ′ ⊢ J

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ, Γ′ ⊢ J
−−−−−−−−−−−−−−−−−−−−−−−−

Proof. Induction on derivations. The raw term is unchanged. The only interesting cases are the
variable rules, where an instance of VAR-MARKED may become an instance of VAR-ROUNDTRIP if
an variable is marked in the premise but not the conclusion.

• VAR: The only case to consider is xs : A ∈ Γ′; we cannot have xs : A ∈ Γ because all variables
in Γ are marked by definition. Because we have used the ordinary VAR rule, the colour of x
must be the top colour s. So the derivation to consider is

s ≺ Ξ{t ≺ 1, . . . } | Γ, Γ′1 ⊢ A type

s ≺ Ξ{t ≺ 1, . . . } | Γ, Γ′1, xs : A, Γ′2 ⊢ x : A

By induction also

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ, Γ′1 ⊢ A type

and so we can reapply VAR, giving

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ, Γ′1, xs : A, Γ′2 ⊢ x : A

• VAR-ROUNDTRIP: Again, x cannot be in Γ, so the derivation to consider is

(s ≺ Ξ{t ≺ 1, . . . })c | (Γ, Γ′1)
c ⊢ A type

s ≺ Ξ{t ≺ 1, . . . } | Γ, Γ′1, xc : A, Γ′2 ⊢ x : As↔c

This time the colour of x may not be the top colour. First, Γc ≡ Γ by Lemma B.1.22. We now
distinguish two cases.
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– If the spot is contained in the slice c then

(s ≺ Ξ)c{t ≺ 1, . . . } | Γ, Γ′c1 ⊢ A type

and inductively

(s ≺ Ξ)c{↓t ≺ Φ, . . . } | Γc, Γ′c1 ⊢ A type

allowing us to re-apply the VAR-ROUNDTRIP rule giving s ≺ Ξ{↓t ≺ Φ, . . . } | Γ, Γ′1, xc :
A, Γ′2 ⊢ x : As↔c

– If the spot is not contained in the slice c then already (s ≺ Ξ{t ≺ 1, . . . })c ≡ (s ≺ Ξ{↓t ≺
Φ, . . . })c and Γ ≡ Γc by Lemma B.3.13. And so already

(s ≺ Ξ{↓t ≺ Φ, . . . })c | Γc, Γ′c1 ⊢ A type

and we can reapply VAR-ROUNDTRIP.

• VAR-MARKED: Now it is possible that xc is either in Γ or Γ′. In the former case we must
distinguish two further possibilities; whether x is already marked in the context Γ.

– xc ∈ Γ and xc ∈ Γ: Here we will keep more careful track of which variables are being
marked in the type. The derivation to consider is

c | Γ1 ⊢ AmΦ|Γ1 type

s ≺ Ξ{t ≺ 1, . . . } | Γ1, xc : A, Γ2, Γ′ ⊢ x : (AmΦ|Γ1)s↔c

Because the context t ≺ Φ | Γ1, xc : A, Γ2 ctx is assumed to be well-formed, we know

(t ≺ Φ)c | Γ1
c ⊢ A type

Because c ∈ (t ≺ Φ), we also know (s ≺ Ξ{↓t ≺ Φ, . . . })c is a cartesian weakening of
(t ≺ Φ)c by Lemma B.2.36, and so we can weaken A to

(s ≺ Ξ{↓t ≺ Φ, . . . })c | Γ1
c ⊢ A type

and apply VAR-ROUNDTRIP giving

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ1, xc : A, Γ2, Γ′ ⊢ x : (AmΞ|Γ1)s↔c

And (AmΞ|Γ1)s↔c ≡ (AmΦ|Γ1)s↔c because A only contains colours from (t ≺ Φ).

– xc ∈ Γ and xc ∈ Γ: Here the derivation to consider is

c | Γ1 ⊢ A type

s ≺ Ξ{t ≺ 1, . . . } | Γ1, xc : A, Γ2, Γ′ ⊢ x : As↔c

By idempotence of marking (Lemma B.1.1), also c | Γ1 ⊢ A type, and so

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ1, xc : A, Γ2, Γ′ ⊢ x : As↔c

is well formed.
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– xc ∈ Γ′: The derivation is

c | Γ, Γ′1 ⊢ A type

s ≺ Ξ{t ≺ 1, . . . } | Γ, Γ′1, xc : A, Γ′2 ⊢ x : As↔c

and by idempotence, Γ, Γ′1 ≡ Γ, Γ′1 and so c | Γ, Γ′1 ⊢ A type. Reapplying VAR-MARKED

gives

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ, Γ′1, xc : A, Γ′2 ⊢ x : As↔c

as required.

• Π-FORM: The inputs are

(s ≺ Ξ){t ≺ 1, . . . } | Γ, Γ′ ⊢ A type

(s ≺ Ξ){t ≺ 1, . . . } | Γ, Γ′, xs : A ⊢ B type

and inductively

(s ≺ Ξ){↓t ≺ Φ, . . . } | Γ, Γ′ ⊢ A type

(s ≺ Ξ){↓t ≺ Φ, . . . } | Γ, Γ′, xs : A ⊢ B type

and we can re-apply Π-FORM.

• ♮-FORM: The input type is

s | Γ, Γ′ ⊢ A type

and by idempotence, Γ, Γ′ ≡ Γ, Γ′, so we can reapply ♮-FORM.

• ⊗-INTRO: The inputs are

(s ≺ Ξ){t ≺ 1, . . . } ⊢ sL ⊠ sR split

(s ≺ Ξ){t ≺ 1, . . . }sL | (Γ, Γ′)sL ⊢ a : A⌜sL⌝↔t

(s ≺ Ξ){t ≺ 1, . . . }sR | (Γ, Γ′)sR ⊢ b : B[at↔⌜sL⌝/xt]⌜sR⌝↔t

Applying Theorem B.2.20 to the split gives (s ≺ Ξ){↓t ≺ Φ, . . . } ⊢ sL ⊠ sR split, and applying
MARKWK/DISPATCH to the terms gives

(s ≺ Ξ){↓t ≺ Φ, . . . }sL | (Γ, Γ′)sL ⊢ a : A⌜sL⌝↔t

(s ≺ Ξ){↓t ≺ Φ, . . . }sR | (Γ, Γ′)sR ⊢ b : B[at↔⌜sL⌝/xt]⌜sR⌝↔t

and so we can reapply the rule.

• ⊸-FORM: The input types are

r | Γ, Γ′ ⊢ A type

p ≺ (s ≺ Ξ){t ≺ 1, . . . } ⊗ r | Γ, Γ′, xr : A ⊢ B type
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As in the case for ♮-FORM, idempotence gives

Γ, Γ′ ≡ Γ, Γ′

and so r | Γ, Γ′ ⊢ A type. Induction on B gives

p ≺ (s ≺ Ξ){↓t ≺ Φ, . . . } ⊗ r | Γ, Γ′, xr : A ⊢ B type

and so we can reapply the rule.

B.3.7 Cartesian Substitution

SUBST
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω t ≺ Φ, Ψ | Γ, Ω, Γ′ ⊢ J

t ≺ Φ | Γ, Γ′[κ | θ] ⊢ J [κ | θ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

There are several generalised versions, all of which operate the same way on raw syntax:

SUBST

s ≺ Ξ{t ≺ Φ, Ψ, . . . } spot
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω s ≺ Ξ{t ≺ Φ, Ψ, . . . } | Γ, Ω, Γ′ ⊢ J

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ, Γ′[κ | θ] ⊢ J [κ | θ]ats
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SUBST/COD

Ψ ⊢ v preslice s ≺ Ξ{Ψv} spot
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω s ≺ Ξ{Ψv} | Γ, Ωv, Γ′ ⊢ J

s ≺ Ξ{↓(t ≺ Φ)v[κ]} | Γv[κ], Γ′[κ | θ] ⊢ J [κ | θ]ats
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SUBST/DOM

Φ ⊢ w preslice s ≺ Ξ{Φw} spot
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω s ≺ Ξ{Φw} | Γw, Ω, Γ′ ⊢ J

s ≺ Ξ{Φw} | Γw, Γ′[κ | θ] ⊢ J [κ | θ]ats
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SUBST/MARKED
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω s ≺ Ξ | Γ, Ω, Γ′ ⊢ J

s ≺ Ξ | Γ, Γ′[κ | θ] ⊢ J [κ | θ]ats
−−−−−−−−−−−−−−−−−−−−−−−−−−

In the SUBST/COD case, the top colour of the conclusion might not be the same as the top colour
of J , in particular, J [κ | θ]ats does not necessarily have top colour s.

To fractionally save on space, we will write J [κ | θ]ats for what should really be J [κ | θ]at⌜s⌝,
letting the slice stand in for its top colour.

Lemma B.3.20. Let s ≺ Ξ{(t ≺ Φ, Ψ)?} | Γ, Ω, Γ′ ctx denote one of the above four situations, so one of

s ≺ Ξ{t ≺ Φ, Ψ, . . . } | Γ, Ω, Γ′ ctx

s ≺ Ξ{Ψv} | Γ, Ωv, Γ′ ctx where Ψ ⊢ v preslice

s ≺ Ξ{Φw} | Γw, Ω, Γ′ ctx where Φ ⊢ w preslice

s ≺ Ξ | Γ, Ω, Γ′ ctx
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and s ≺ Ξ{↓(t ≺ Φ)?[κ]} | Γ, Γ′[κ | θ] ctx the corresponding conclusion contexts

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ, Γ′[κ | θ] ctx

s ≺ Ξ{↓(t ≺ Φ)v[κ]} | Γv[κ], Γ′[κ | θ] ctx where Ψ ⊢ v preslice

s ≺ Ξ{Φw} | Γw, Γ′[κ | θ] ctx where Φ ⊢ w preslice

s ≺ Ξ | Γ, Γ′[κ | θ] ctx

respectively. In each case we can substitute ‘under a slice’:

SUBST/DISPATCH

s ≺ Ξ{(t ≺ Φ, Ψ)?} ⊢ s slice

t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω (s ≺ Ξ{↓(t ≺ Φ, Ψ)?})s | (Γ, Ω, Γ′)s ⊢ J

(s ≺ Ξ{↓(t ≺ Φ)?[κ]})s[κ] | (Γ, Γ′[κ | θ])s[κ] ⊢ J [κ | θ]ats
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Proof.

• SUBST: There are four cases:

– s contains all of t ≺ Φ, Ψ, . . . : Then

(s ≺ Ξ)s{t ≺ Φ, Ψ, . . . } | Γ, Ω, Γ′s ⊢ J

Then applying SUBST gives

(s ≺ Ξ)s{↓t ≺ Φ, . . . } | Γ, Γ′s[κ | θ] ⊢ J [κ | θ]ats

By Lemma B.2.2,

(s ≺ Ξ)s{↓t ≺ Φ, . . . } ≡ (s ≺ Ξ{↓t ≺ Φ, . . . })s

In this case s ≡ s[κ], and by Lemma B.1.23,

Γ′[κ | θ]s[κ] ≡ Γ′s[κ | θ]

so

(s ≺ Ξ{↓t ≺ Φ, . . . })s | (Γ, Γ′[κ | θ])s[κ] ⊢ J [κ | θ]ats

as required.

– s intersects Ψ: Then Ψ ⊢ s ∩Ψ slice and Ξs{Ψs∩Ψ} spot. The input judgement is

(s ≺ Ξ)s{Ψs∩Ψ} | Γ, Ωs∩Ψ, Γ′s ⊢ J

and applying SUBST/COD,

(s ≺ Ξ)s{↓(t ≺ Φ)(s∩Ψ)[κ]} | Γ(s∩Ψ)[κ], Γ′s[κ | θ] ⊢ J [κ | θ]ats

220



This is the correct palette by Lemma B.2.27. Also

Γ(s∩Ψ)[κ] ≡ Γs[κ]

by Lemma B.3.12 and

Γ′s[κ | θ] ≡ Γ′[κ | θ]s[κ]

by Lemma B.1.23. And so we have

(s ≺ Ξ{↓(t ≺ Φ)})s[κ] | (Γ, Γ′[κ | θ])s[κ] ⊢ J [κ | θ]ats

as required.

– s intersects Φ: Then Φ ⊢ s ∩Φ slice and Ξs{Φs∩Φ} spot. The input judgement is

(s ≺ Ξ)s{Φs∩Φ} | Γs∩Φ, Ω, Γ′s ⊢ J

and applying SUBST/DOM,

(s ≺ Ξ)s{Φs∩Φ} | Γs∩Φ, Γ′s[κ | θ] ⊢ J [κ | θ]ats

This palette is equal to (s ≺ Ξ{↓t ≺ Φ, . . . })s by Lemma B.2.1. Because s does not
intersect Ψ, s[κ] ≡ s. Then Lemma B.3.12 gives

Γs∩Φ ≡ Γs ≡ Γs[κ]

because Ψ does not occur in Γ, and

Γ′s[κ | θ] ≡ Γ′[κ | θ]s[κ]

by Lemma B.1.23. So

(s ≺ Ξ{t ≺ Φ, . . . })s[κ] | (Γ, Γ′[κ | θ])s[κ] ⊢ J [κ | θ]ats

as required.

– s does not intersect t ≺ Φ, Ψ, . . . : Then the input is

(s ≺ Ξ)s | Γ, Ω, Γ′s ⊢ J

and applying SUBST/MARKED gives

(s ≺ Ξ)s | Γ, Γ′s[κ | θ] ⊢ J [κ | θ]ats

and Lemma B.1.23 gives that Γ, Γ′s[κ | θ] ≡ (Γ, Γ′[κ | θ])s[κ] as required.

• SUBST/COD: There are two cases:
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– s intersects Ψv: Then Ψ ⊢ s ∩ v preslice, and the input is

(s ≺ Ξ)s{Ψs∩v} | Γ, Ωs∩v, Γ′s ⊢ J

where (s ≺ Ξ)s{Ψs∩v} spot by Lemma B.2.32 and (Γ)s ≡ Γ by Lemma B.1.22. Then we
can reapply SUBST/COD, giving

(s ≺ Ξ)s{↓(t ≺ Φ)(s∩v)[κ]} | Γ(s∩v)[κ], Γ′s[κ | θ] ⊢ J [κ | θ]ats

This is the correct palette by Lemma B.2.33. Also

Γ(s∩v)[κ] ≡ (Γv[κ])s[κ]

by Lemma B.3.10 and

Γ′s[κ | θ] ≡ Γ′[κ | θ]s[κ]

by Lemma B.1.23. And so we have

(s ≺ Ξ{↓(t ≺ Φ)v[κ]})s[κ] | (Γv[κ], Γ′[κ | θ])s[κ] ⊢ J [κ | θ]ats

as required.

– s is disjoint from Ψv: Then the input is

(s ≺ Ξ)s | Γ, Ω, Γ′s ⊢ J

to which we can apply SUBST/MARKED, giving

(s ≺ Ξ)s | Γ, Γ′s[κ | θ] ⊢ J [κ | θ]ats

Because s does not intersect the spot, we know (s ≺ Ξ)s ≡ (s ≺ Ξ{↓(t ≺ Φ)v[κ]})s, so
this is already the correct palette. Again, Γ′[κ | θ]s[κ] ≡ Γ′s[κ | θ] by Lemma B.1.23.

• SUBST/DOM: There are two cases:

– s intersects Φw: Then Φ ⊢ s ∩ w presliceϵ, and the input is

(s ≺ Ξ)s{Φs∩v} | Γs∩w, Ω, Γ′s ⊢ J

Then applying SUBST/DOM gives

(s ≺ Ξ)s{Ψs∩v} | Γs∩w, Γ′s[κ | θ] ⊢ J [κ | θ]ats

And Γs∩w, Γ′s[κ | θ] ≡ (Γw, Γ′[κ | θ])s by Lemma B.3.8 and Lemma B.1.23.

– s is disjoint from Φw: Then the input is

(s ≺ Ξ)s | Γ, Ω, Γ′s ⊢ J

to which we can apply SUBST/MARKED, giving

(s ≺ Ξ)s | Γ, Γ′s[κ | θ] ⊢ J [κ | θ]ats

This is already the correct palette, and Γ′[κ | θ]s[κ] ≡ Γ′s[κ | θ] by Lemma B.1.23.
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• SUBST/MARKED: The input is equal to

(s ≺ Ξ)s | Γ, Ω, Γ′s ⊢ J

and so we can apply SUBST/MARKED giving

(s ≺ Ξ)s | Γ, Γ′s[κ | θ] ⊢ J [κ | θ]ats

By Lemma B.1.23, this is the correct context, and s[κ] ≡ s because s is fresh for κ.

Theorem B.3.21. Substitution on terms is admissible.

SUBST
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω t ≺ Φ, Ψ | Γ, Ω, Γ′ ⊢ a : A

t ≺ Φ | Γ, Γ′[κ | θ] ⊢ a[κ | θ] : A[κ | θ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Proof. As usual, each variable rule has cases for the position of the variable in the context.
Variables:

• VAR:

– xs : A ∈ Γ: Then also xs : A ∈ Γ in the conclusion, and so we can reapply VAR.

– xs : A ∈ Ω: Then we must have s ≡ t, and the palette is a cartesian extension t ≺ Φ, Ψ, Φ′

of t ≺ Φ. The substitution has the form

t ≺ Φ | Γ ⊢ (κ | θ, a/xs, θ′) : Ψ | Ω, xs : A, Ω′

where

t ≺ Φ | Γ ⊢ a : A[κ | θ]att

and so by weakening, also

t ≺ Φ, Φ′ | Γ, Γ′[κ | θ, a/xs, θ′]att ⊢ a : A[κ | θ]att

and finally, because x and Ω′ do not occur in A,

t ≺ Φ, Φ′ | Γ, Γ′[κ | θ, a/xs, θ′]att ⊢ a : A[κ | θ, a/xs, θ′]att

– xs : A ∈ Γ′: Then xs : A[κ | θ]att ∈ Γ′[κ | θ], and so we can reapply VAR.

• VAR/COD:

– xs : A ∈ Γ: Cannot occur, as all variables in Γ are marked.
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– xs : A ∈ Ωv: We must have v ≡ s. The substitution has the form

t ≺ Φ | Γ ⊢ (κ | θ, a/xs, θ′) : Ψ | Ω, xs : A, Ω′

where

(t ≺ Φ)s[κ] | Γs[κ] ⊢ a : A[κ | θ]ats[κ]

Again, by weakening and that x and the variables in Ω′ do not occur in A, also

(t ≺ Φ)s[κ] | Γs[κ], Γ′[κ | θ, a/xs, θ′]ats[κ] ⊢ a : A[κ | θ, a/xs, θ′]ats[κ]

– xs : A ∈ Γ′: Then xs : A[κ | θ]att ∈ Γ′[κ | θ], and so we can reapply VAR.

• VAR/DOM:

– xs : A ∈ Γw: We must have w ≡ s. Then also xs : A ∈ Γw in the conclusion, and we can
reapply VAR.

– xs : A ∈ Ω: Cannot occur, as all variables in Ω are marked.

– xs : A ∈ Γ′: Then xs : A[κ | θ]att ∈ Γ′[κ | θ], and so we can reapply VAR.

• VAR/MARKED:

– xs : A ∈ Γ: Cannot occur, as all variables in Γ are marked.

– xs : A ∈ Ω: Cannot occur, as all variables in Ω are marked.

– xs : A ∈ Γ′: Then xs : A[κ | θ]att ∈ Γ′[κ | θ], and so we can reapply VAR.

• VAR-ROUNDTRIP:

– xc : A ∈ Γ: Then also xc : A ∈ Γ in the conclusion, and so we can reapply VAR-
ROUNDTRIP.

– xc : A ∈ Ω: The substitution has the form

t ≺ Φ | Γ ⊢ (κ | θ, a/xc, θ′) : Ψ | Ω, xc : A, Ω′

where

(t ≺ Φ)c[κ] | Γc[κ] ⊢ a : A[κ | θ]atc[κ]

Marking followed by relabelling gives

s | Γ ⊢ as↔c[κ] : A[κ | θ]atc[κ]s↔c[κ]

This can be mark-weakened to

s ≺ Ξ{t ≺ Φ, . . . } | Γ ⊢ as↔c[κ] : A[κ | θ]atc[κ]s↔c[κ]
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and then weakened to

s ≺ Ξ{t ≺ Φ, . . . } | Γ, Γ′[κ | θ]ats ⊢ as↔c[κ] : A[κ | θ]atc[κ]s↔c[κ]

Finally, the type is

A[κ | θ]atc[κ]s↔c[κ] ≡ (A[κ | θ]atc[κ])s↔c[κ] ≡ As↔c[κ | θ]ats

by Lemma B.1.4 followed by Lemma B.1.5.

– xc : A ∈ Γ′: Then xc : A[κ | θ]atc ∈ Γ′[κ | θ] and so

s ≺ Ξ{t ≺ Φ, . . . } | Γ, Γ′[κ | θ]ats ⊢ x : (A[κ | θ]atc)s↔c

Again,

(A[κ | θ]atc)s↔c ≡ (A[κ | θ]atc)s↔c ≡ As↔c[κ | θ]ats

by Lemma B.1.4 followed by Lemma B.1.5, because c is not substituted for by κ.

• VAR-ROUNDTRIP/COD:

– xc : A ∈ Γ: Cannot occur, as all variables in Γ are marked.

– xc : A ∈ Ωv: Similar to the case for VAR-ROUNDTRIP, instead mark-weakening Γ to Γv[κ]

– xc : A ∈ Γ′: Then xc : A[κ | θ]att ∈ Γ′[κ | θ], and so we can reapply VAR-ROUNDTRIP.

• VAR-ROUNDTRIP/DOM:

– xc : A ∈ Γw: Then xc : A ∈ Γw, in the conclusion and so we can reapply VAR-ROUNDTRIP.

– xc : A ∈ Ω: Cannot occur, as all variables in Ω are marked.

– xc : A ∈ Γ′: Then xc : A[κ | θ]att ∈ Γ′[κ | θ], and so we can reapply VAR-ROUNDTRIP.

• VAR-ROUNDTRIP/MARKED:

– xc : A ∈ Γ: Cannot occur, as all variables in Γ are marked.

– xc : A ∈ Ω: Cannot occur, as all variables in Ω are marked.

– xc : A ∈ Γ′: Then xc : A[κ | θ]att ∈ Γ′[κ | θ], and so we can reapply VAR-ROUNDTRIP.

• VAR-MARKED:

– xc : A ∈ Γ: Then also xc : A ∈ Γ in the conclusion, so we can reapply VAR-MARKED.

– xc : A ∈ Ω: Then the substitution contains

c | Γ ⊢ a : A[κ | θ]atc

and this can be re-labelled and mark-weakened to

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ ⊢ as↔c : (A[κ | θ]atc)s↔c

Finally, (A[κ | θ]atc)s↔c ≡ (A[κ | θ]s↔c)ats by Lemma B.1.5, using that s[κ] ≡ s and
c[κ] ≡ c in this case.
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– xc : A ∈ Γ′: Then xc : A[κ | θ]atc ∈ Γ′[κ | θ], so we can reapply the rule.

• VAR-MARKED/COD:

– xc : A ∈ Γ: There are two further cases, depending on whether x is marked in the
conclusion. This is determined by whether c is contained in the slice v[κ].

* c ∈ v[κ]: Then there is xc : A′ ∈ Γv[κ], where A′ is a type such that A′ ≡ A. And so
we may use VAR-ROUNDTRIP to form

s ≺ Ξ{↓(t ≺ Φ)v[κ]} | Γv[κ], Γ′[κ | θ] ⊢ xs↔c : A′

whose type is A′ ≡ A ≡ A[κ | θ]ats, because A is fresh for θ.

* c /∈ v[κ]: Then there is xc : A ∈ Γv[κ], and we can reapply VAR-MARKED.

– xc : A ∈ Ωv: There are two further cases, depending on whether x is marked in the
original telescope Ω.

* xc : A ∈ Ω: The substitution has the form

t ≺ Φ | Γ ⊢ (κ | θ, a/xc, θ′) : Ψ | Ω, xc : A, Ω′

where

(t ≺ Φ)c[κ] | Γc[κ] ⊢ a : A[κ | θ]atc[κ]

Marking this term gives

⌜c[κ]⌝ | Γc[κ] ⊢ a : A[κ | θ]atc[κ]

By Lemma B.1.22 and Lemma B.1.4 on the context and type respectively, this is

⌜c[κ]⌝ | Γ ⊢ a : A[κ | θ]atc[κ]

which can be recoloured and then silently mark-weakened and weakened to

s ≺ Ξ{↓(t ≺ Φ)v[κ]} | Γv[κ], Γ′[κ | θ] ⊢ as↔⌜c[κ]⌝ : (A[κ | θ]atc[κ])s↔⌜c[κ]⌝

Finally (A[κ | θ]atc[κ])s↔⌜c[κ]⌝ ≡ (As↔⌜c[κ]⌝)[κ | θ]ats as required.

* xc : A ∈ Ω: The substitution has the form

t ≺ Φ | Γ ⊢ (κ | θ, a/xc, θ′) : Ψ | Ω, xc : A, Ω′

where

c | Γ ⊢ a : A[κ | θ]atc

As in the last case, this term can be recoloured and then silently mark-weakened
and weakened to

s ≺ Ξ{↓(t ≺ Φ)v[κ]} | Γv[κ], Γ′[κ | θ] ⊢ as↔c : (A[κ | θ]atc)s↔c

And (A[κ | θ]atc)s↔c ≡ As↔c[κ | θ]ats as required.
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– xc : A ∈ Γ′: Then xc : A[κ | θ]atc ∈ Γ′[κ | θ], so we can reapply the rule.

• VAR-MARKED/DOM:

– xc : A ∈ Γw: Then also xc : A ∈ Γw in the conclusion, and so we can reapply VAR-
MARKED.

– xc : A ∈ Ω: Essentially the same as in VAR-MARKED/COD, with cases depending on
whether x is marked in Ω.

– xc : A ∈ Γ′: Then xc : A[κ | θ]atc ∈ Γ′[κ | θ], so we can reapply the rule.

• VAR-MARKED/MARKED: Same as previous, but with no mark-weakening of Γ needed.

Ordinary type formers: Immmediate by induction, in every case.
♮-type:

• ♮-FORM: Immediate by SUBST/MARKED and reapplying the rule.

• ♮-INTRO: Immediate by SUBST/MARKED and reapplying the rule.

• ♮-ELIM: Immediate by induction (with the same instance of SUBST/?) and reapplying the
rule.

⊗-type:

• ⊗-FORM: The premises of the rule are in completely marked contexts, so in all cases apply
SUBST/MARKED to give

s | Γ, Γ′[κ | θ] ⊢ A[κ | θ]ats type

s | Γ, Γ′[κ | θ], xt : A[κ | θ]att ⊢ B[κ | θ]ats type

By Lemma B.1.4, these contexts are

s | Γ, Γ′[κ | θ] ⊢ A[κ | θ]ats type

s | Γ, Γ′[κ | θ], xs : A[κ | θ]ats ⊢ B[κ | θ]ats type

and so we may reapply the rule, giving

s ≺ Ξ | Γ, Γ′[κ | θ] ⊢ ⃝∑ (x:A[κ|θ]ats)[κ | θ]ats type

• ⊗-INTRO: Suppose we have inputs

s ≺ Ξ{(t ≺ Φ, Ψ)?} ⊢ sL ⊠ sR split

(s ≺ Ξ{(t ≺ Φ, Ψ)?})sL | (Γ, Ω, Γ′)sL ⊢ a : A⌜sL⌝↔t

(s ≺ Ξ{(t ≺ Φ, Ψ)?})sR | (Γ, Ω, Γ′)sR ⊢ b : B[at↔⌜sL⌝/xt]⌜sR⌝↔t
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Applying SUBST/DISPATCH to each,

s ≺ Ξ{↓(t ≺ Φ)?[κ]} ⊢ sL[κ]⊠ sR[κ] split

(s ≺ Ξ{↓(t ≺ Φ)?[κ]})sL[κ] | (Γ, Γ′[κ | θ])sL[κ] ⊢ a[κ | θ]atsL : A⌜sL⌝↔s[κ | θ]atsL

(s ≺ Ξ{↓(t ≺ Φ)?[κ]})sR[κ] | (Γ, Γ′[κ | θ])sR[κ] ⊢ b[κ | θ]atsR : B[as↔⌜sL⌝/xs]⌜sR⌝↔s[κ | θ]atsR

and so we just have to check that those types are correct. For A,

A⌜sL⌝↔s[κ | θ]atsL ≡ (A[κ | θ]ats)⌜sL[κ]⌝↔⌜s[κ]⌝

by Lemma B.1.5. For B,

B[as↔⌜sL⌝/xs]⌜sR⌝↔s[κ | θ]atsR

≡ (B[as↔⌜sL⌝/xs][κ | θ]ats)⌜sR[κ]⌝↔⌜s[κ]⌝ (Lemma B.1.5)

≡ (B[κ | θ]ats[as↔⌜sL⌝[κ | θ]ats/xs])⌜sR[κ]⌝↔⌜s[κ]⌝ (Lemma B.1.2)

≡ (B[κ | θ]ats[(a[κ | θ]atsL)⌜s[κ]⌝↔⌜sL[κ]⌝/xs])⌜sR[κ]⌝↔⌜s[κ]⌝ (Lemma B.1.5)

And so a[κ | θ]atsL and b[κ | θ]atsR have the correct types to re-apply ⊗-INTRO:

s ≺ Ξ{↓(t ≺ Φ)?[κ]} | Γ, Γ′[κ | θ] ⊢ a[κ | θ]atsL ⊗sL[κ] sR[κ]
b[κ | θ]atsR :⃝∑ (x:A[κ|θ]ats)B[κ | θ]ats

Pattern matching: The desired rule is:

SUBST

s ≺ Ξ{t ≺ Φ, Ψ, . . . } spot
t ≺ Φ | Γ ⊢ (κ | θ) : Ψ | Ω s ≺ Ξ{t ≺ Φ, Ψ, . . . } | Γ, Ω, Γ′ ⊢ Ψp | Ωp ⊢ p : A pattern

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ, Γ′[κ | θ] ⊢ Ψp | Ωp[κ | θ] ⊢ p : A[κ | θ]ats pattern
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

so that, in particular, the raw syntax of the pattern p is not changed.
On patterns, almost every case is immediate by induction. The interesting cases:

• ♮-PAT: We start with

s ≺ Ξ{(t ≺ Φ, Ψ)?} | Γ, Ω, Γ′ ⊢ Ψ | Ωp ⊢ p : A pattern

and inductively

s ≺ Ξ{↓(t ≺ Φ)?[κ]} | Γ, Γ′[κ | θ] ⊢ Ψp | Ωp[κ | θ] ⊢ p : A[κ | θ]ats pattern

Reapplying the rule gives

s ≺ Ξ{↓(t ≺ Φ)?[κ]} | Γ, Γ′[κ | θ] ⊢ 1 | Ωp[κ | θ] ⊢ p♮ : ♮A[κ | θ]ats pattern

By Lemma B.1.4, the telescope and type here are equal to Ωp[κ | θ] and A[κ | θ]ats respectively,
as was required.
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• ⊗-PAT: The inputs are

cL | Γ, Ω, Γ′ ⊢ ΨL | ΩL ⊢ pL : AcL↔s pattern

cR | Γ, Ω, Γ′, ΩL ⊢ ΨR | ΩR ⊢ pR : B[pL
s↔cL /x]cR↔s pattern

Applying SUBST/MARKED to each gives

cL | Γ, Γ′[κ | θ] ⊢ ΨL | ΩL[κ | θ] ⊢ pL : AcL↔s[κ | θ] pattern

cR | Γ, Γ′[κ | θ], ΩL[κ | θ] ⊢ ΨR | ΩR[κ | θ] ⊢ pR : B[pL
s↔cL /x]cR↔s[κ | θ] pattern

The same calculation as in ⊗-INTRO shows that

AcL↔s[κ | θ]atcL ≡ (A[κ | θ]ats)⌜cL[κ]⌝↔⌜s[κ]⌝

B[as↔cL /xs]cR↔s[κ | θ]atcR ≡ (B[κ | θ]ats[(pL[κ | θ]atcL)⌜s[κ]⌝↔⌜cL[κ]⌝/xs])⌜cR[κ]⌝↔⌜s[κ]⌝

The terms pL, cL and cR are fresh for κ and θ, so these types are in turn equal to

AcL↔s[κ | θ]atcL ≡ (A[κ | θ]ats)cL↔⌜s[κ]⌝

B[as↔cL /xs]cR↔s[κ | θ]atcR ≡ (B[κ | θ]ats[pL
⌜s[κ]⌝↔cL /xs])cR↔⌜s[κ]⌝

which are of the correct form to reapply ⊗-PAT.

The match rule itself follows by induction, and that substitutions commute (Lemma B.1.2).
⊸-types:

• ⊸-FORM: The inputs are

r | Γ, Ω, Γ′ ⊢ A type

p ≺ (s ≺ Ξ{(t ≺ Φ, Ψ)?})⊗ r | Γ, Ω, Γ′, xr : A ⊢ B type

then by SUBST/MARKED on A and the same case on B,

r | Γ, Γ′[κ | θ] ⊢ A[κ | θ]atr type

p ≺ (s ≺ Ξ{↓(t ≺ Φ)?[κ]})⊗ r | Γ, Γ′[κ | θ], xr : A[κ | θ]atr ⊢ B[κ | θ]atp type

After rewriting Γ′[κ | θ] ≡ Γ′[κ | θ] using Lemma B.1.4, these are of the right shape to reapply
⊸-FORM:

s ≺ Ξ{↓(t ≺ Φ)?[κ]} | Γ, Γ′[κ | θ] ⊢ ⃝∏ (xr :A[κ|θ]atr)
pB[κ | θ]atp type

• ⊸-INTRO: Essentially identical to the previous.

• ⊸-ELIM: The inputs are

s ≺ Ξ{(t ≺ Φ, Ψ)?} ⊢ sL ⊠ sR split

(s ≺ Ξ{(t ≺ Φ, Ψ)?})sL | (Γ, Ω, Γ′)sL ⊢ f :⃝∏ (xr :A)
pB

(s ≺ Ξ{(t ≺ Φ, Ψ)?})sR | (Γ, Ω, Γ′)sR ⊢ a : A
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then applying SUBST/DISPATCH,

s ≺ Ξ{↓(t ≺ Φ)?[κ]} ⊢ sL[κ]⊠ sR[κ] split

(s ≺ Ξ{↓(t ≺ Φ)?[κ]})sL[κ] | (Γ, Γ′[κ | θ])sL[κ] ⊢ f [κ | θ]atsL :
(
⃝∏ (xr :A)

pB
)
[κ | θ]atsL

(s ≺ Ξ{↓(t ≺ Φ)?[κ]})sR[κ] | (Γ, Γ′[κ | θ])sR[κ] ⊢ a[κ | θ]atsR : A[κ | θ]atsR

(recall that r :≡ ⌜sR⌝). By definition,(
⃝∏ (xr :A)

pB
)
[κ | θ]atsL ≡ ⃝∏ (xr :A[κ|θ]atsR )

pB[κ | θ]atp

so reapplying the rule gives

s ≺ Ξ{↓(t ≺ Φ)?[κ]} | Γ, Γ′[κ | θ] ⊢ f [κ | θ]atsL
sL[κ]⟨a[κ | θ]atsR⟩sR[κ]

: B[κ | θ]atp[a[κ | θ]atsR /xr][(s ≺ sL[κ]⊠ sR[κ]/p)]

This type is equal to

B[κ | θ]atp[a[κ | θ]atr/xr][(s ≺ sL[κ]⊠ sR[κ]/p)]

≡ B[a/xr][κ | θ]atp[(s ≺ sL[κ]⊠ sR[κ]/p)] (Lemma B.1.2)

≡ B[a/xr][(s ≺ sL ⊠ sR/p)][κ | θ]ats (Lemma B.1.7)

as required.

B.3.8 Merging

MERGE

t ≺ Φ ⊢ tL ⊠ tR split

t′ ≺ ΦtL ⊗ΦtR | ΓsL⊗sR ⊢ J

t ≺ Φ | Γ ⊢ J [(t ≺ tL ⊠ tR/t′)]
−−−−−−−−−−−−−−−−

This is very similar to mark-weakening: marked variables in the premise become unmarked in
the conclusion.

And the generalised rules:

MERGE

t ≺ Φ | Γ ctx (s ≺ Ξ){t′ ≺ ΦtL ⊗ΦtR , . . . } | ΓsL⊗sR ; Γ′ ext
(s ≺ Ξ){t′ ≺ ΦtL ⊗ΦtR , . . . } | ΓsL⊗sR , Γ′ ⊢ J

(s ≺ Ξ){↓t ≺ Φ, . . . } | Γ, Γ′[(t ≺ tL ⊠ tR/t′)] ⊢ J [(t ≺ tL ⊠ tR/t′)]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

MERGE/PARTIAL

ΦtL ⊗ΦtR ⊢ w preslice

t ≺ Φ | Γ ctx (s ≺ Ξ){(ΦtL ⊗ΦtR)w} | (ΓsL⊗sR)w; Γ′ ext
(s ≺ Ξ){(ΦtL ⊗ΦtR)w} | (ΓsL⊗sR)w, Γ′ ⊢ J

(s ≺ Ξ){↓Φw[(t≺tL⊠tR/t′)]} | Γw[(t≺tL⊠tR/t′)], Γ′[(t ≺ tL ⊠ tR/t′)] ⊢ J [(t ≺ tL ⊠ tR/t′)]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The following equation will come up a few times:
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Lemma B.3.22. If A is well-typed in a marked context, then As↔c[(t ≺ tL ⊠ tR/t′)] ≡ Ast↔t′↔ct↔t′

Proof.

As↔c[(t ≺ tL ⊠ tR/t′)]

≡ (A[(t ≺ tL ⊠ tR/t′)])s
t↔t′↔ct↔t′

(Lemma B.1.19)

≡ (A[(t ≺ tL ⊠ tR/t′)])s
t↔t′↔ct↔t′

(Lemma B.3.17)

≡ (At↔t′)s
t↔t′↔ct↔t′

(Lemma B.1.17)

≡ (At↔t′)s
t↔t′↔ct↔t′

(Lemma B.3.17)

≡ Ast↔t′↔ct↔t′
(t′ fresh for A)

Recall that on the raw syntax of a term, this merging operation only affects the slice annotations
on the each instance of the splitting rules; the underlying term is unchanged. This includes the
marks on variable uses, which are also unchanged.

Lemma B.3.23. Let (s ≺ Ξ){(t′ ≺ ΦtL ⊗ΦtR)?} | ΓsL⊗sR , Γ′ ctx denote one of the above two situations,
so one of

(s ≺ Ξ){t′ ≺ ΦtL ⊗ΦtR , . . . } | ΓsL⊗sR , Γ′ ctx

(s ≺ Ξ){(ΦtL ⊗ΦtR)w} | (ΓsL⊗sR)w, Γ′ ctx

and s ≺ Ξ{↓(t ≺ Φ)?[(t≺tL⊠tR/t′)]} | Γ, Γ′[(t ≺ tL ⊠ tR/t′)] ctx the respective conclusion contexts

(s ≺ Ξ){↓t ≺ Φ, . . . } | Γ, Γ′[(t ≺ tL ⊠ tR/t′)] ctx

(s ≺ Ξ){↓Φw[(t≺tL⊠tR/t′)]} | Γw[(t≺tL⊠tR/t′)], Γ′[(t ≺ tL ⊠ tR/t′)] ctx

In both cases we can merge ‘under a slice’:

MERGE/DISPATCH

(s ≺ Ξ){(t′ ≺ ΦtL ⊗ΦtR , . . . )?} ⊢ s slice

t ≺ Φ | Γ ctx (s ≺ Ξ){(t′ ≺ ΦtL ⊗ΦtR , . . . )?} | ΓsL⊗sR ; Γ′ ext
((s ≺ Ξ){(t′ ≺ ΦtL ⊗ΦtR , . . . )?})s | (ΓsL⊗sR , Γ′)s ⊢ J

(s ≺ Ξ{↓(t ≺ Φ)?[(t≺tL⊠tR/t′)]})s[(t≺tL⊠tR/t′)] | (Γ, Γ′[(t ≺ tL ⊠ tR/t′)])s[(t≺tL⊠tR/t′)] ⊢ J [(t ≺ tL ⊠ tR/t′)]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Proof. • MERGE: There are a few cases:

– The slice s contains the entire spot: Then

(s ≺ Ξ)s{t′ ≺ ΦtL ⊗ΦtR , . . . } | ΓsL⊗sR , Γ′t ⊢ J

and we can apply SUBST to get

(s ≺ Ξ)s{↓t ≺ Φ, . . . } | Γ, Γ′s[(t ≺ tL ⊠ tR/t′)] ⊢ J [(t ≺ tL ⊠ tR/t′)]
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By Lemma B.2.2 we know

(s ≺ Ξ)t{↓t ≺ Φ, . . . } ≡ ((s ≺ Ξ){↓t ≺ Φ, . . . })s

In this case s ≡ s[(t ≺ tL ⊠ tR/t′)], and Lemma B.1.24 gives

Γ′s[(t ≺ tL ⊠ tR/t′)] ≡ Γ′[(t ≺ tL ⊠ tR/t′)]s

so
((s ≺ Ξ){↓t ≺ Φ, . . . })s | (Γ, Γ′[(t ≺ tL ⊠ tR/t′)])s ⊢ J [(t ≺ tL ⊠ tR/t′)]

as required.

– If the slice s intersects ΦtL ⊗ΦtR : Then ΦtL ⊗ΦtR ⊢ s ∩ (ΦtL ⊗ΦtR) preslice and

(s ≺ Ξ)s{(ΦtL ⊗ΦtR)s∩(ΦtL⊗ΦtR} spot

We can apply MERGE/PARTIAL to get

(s ≺ Ξ)s{↓Φ(s∩(ΦtL⊗ΦtR ))[(t≺tL⊠tR/t′)]} | Γ(s∩(ΦtL⊗ΦtR ))[(t≺tL⊠tR/t′)], Γ′[(t ≺ tL ⊠ tR/t′)]

⊢ J [(t ≺ tL ⊠ tR/t′)]

Now we just need that

(s ≺ Ξ)s{↓Φ(s∩(ΦtL⊗ΦtR ))[(t≺tL⊠tR/t′)]} ≡ (s ≺ Ξ){↓(t ≺ Φ, . . . )}s[(t≺tL⊠tR/t′)]

but this is Lemma B.2.35, and

Γ(s∩(ΦtL⊗ΦtR ))[(t≺tL⊠tR/t′)] ≡ Γs[(t≺tL⊠tR/t′)]

but this is Lemma B.3.12.

– The slice s does not intersect the spot: Then

(s ≺ Ξ)s | Γ, Γ′s ⊢ J

and already
J ≡ J [(t ≺ tL ⊠ tR/t′)]

by Lemma B.1.12, and

(s ≺ Ξ)s ≡ (s ≺ Ξ{↓t ≺ Φ, . . . })s

by Lemma B.2.1, so

((s ≺ Ξ){↓t ≺ Φ, . . . })s | (Γ, Γ′[(t ≺ sL ⊠ sR/t′))])s ⊢ J [(t ≺ tL ⊠ tR/t′)]

as required.

• MERGE/PARTIAL: There are two cases:
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– s intersects (ΦtL ⊗ΦtR)w: then ΦtL ⊗ΦtR ⊢ w ∩ s preslice, and the input is

(s ≺ Ξ)s{(ΦtL ⊗ΦtR)w∩s} | (ΓsL⊗sR)w∩s, Γ′s ⊢ J

Then we can reapply MERGE/PARTIAL, giving

(s ≺ Ξ)s{↓Φ(w∩s)[(t≺tL⊠tR/t′)]} | Γ(w∩s)[(t≺tL⊠tR/t′)], Γ′s[(t ≺ tL ⊠ tR/t′)] ⊢ J [(t ≺ tL ⊠ tR/t′)]

Again this is the correct palette by Lemma B.2.35, and the context is equal to

(Γw[(t≺tL⊠tR/t′)], Γ′[(t ≺ tL ⊠ tR/t′)])s[(t≺tL⊠tR/t′)]

by Lemma B.3.11 for Γ and Lemma B.1.24 for Γ′.

– s does not intersect the spot: Similar to the case for MERGE, because also

(Γw[(t≺tL⊠tR/t′)])s[(t≺tL⊠tR/t′)] ≡ Γ

in the conclusion.

Theorem B.3.24. Merging on terms is admissible.

MERGE

t ≺ Φ ⊢ tL ⊠ tR split

t′ ≺ ΦtL ⊗ΦtR | ΓsL⊗sR ⊢ a : A

t ≺ Φ | Γ ⊢ a[(t ≺ tL ⊠ tR/t′)] : A[(t ≺ tL ⊠ tR/t′)]
−−−−−−−−−−−−−−−−−−−−−−−−−−

Proof. Many of the cases rely on Lemma B.2.38 to know that the top colour of the conclusion is
st↔t′ .

As usual, each variable rule has cases for the position of the variable in the context. Variables:

• VAR:

– xs : A ∈ ΓtL⊗tR : Cannot occur, because s does not occur in tL ⊗ tR (even in the case that
s ≡ t′, i.e., the spot used is the trivial spot).

– xs : A ∈ Γ′: Then the derivation is

s ≺ Ξ{t′ ≺ ΦtL ⊗ΦtR , . . . } | ΓtL⊗tR , Γ′1 ⊢ A type

s ≺ Ξ{t′ ≺ ΦtL ⊗ΦtR , . . . } | ΓtL⊗tR , Γ′1, xs : A, Γ′2 ⊢ x : A

In the conclusion we have xst↔t′
: A[(t ≺ tL ⊠ tR/t′)] ∈ Γ′[(t ≺ tL ⊠ tR/t′)] and s[(t ≺

tL ⊠ tR/t′)] is the top colour, so we can reapply VAR, giving

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ, (Γ′1, xs : A, Γ′2)[(t ≺ tL ⊠ tR/t′)] ⊢ x : A[(t ≺ tL ⊠ tR/t′)]

• VAR/PARTIAL:

– xs : A ∈ (ΓtL⊗tR)w: Then s ∈ w, and so also s ∈ w[(t ≺ tL ⊠ tR/t′)] by Lemma B.2.37. So
xs : A ∈ Γw[(t≺tL⊠tR/t′)] in the conclusion, and we can reapply VAR.
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– xs : A ∈ Γ′: Then xs : A[(t ≺ tL ⊠ tR/t′)] ∈ Γ′[(t ≺ tL ⊠ tR/t′)] and so we can reapply VAR.

• VAR-ROUNDTRIP:

– xc : A ∈ ΓtL⊗tR : The derivation is

Also xc : A ∈ Γ in the conclusion, and so we can reuse VAR-ROUNDTRIP to form

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ1, xc : A, Γ2, Γ′[(t ≺ tL ⊠ tR/t′)] ⊢ x : Ast↔t′↔c

and this type is Ast↔t′↔c by Lemma B.3.22.

– xc : A ∈ Γ′: The derivation is

(s ≺ Ξ{t′ ≺ ΦtL ⊗ΦtR , . . . })c | (ΓtL⊗tR , Γ1)
c ⊢ A type

s ≺ Ξ{t′ ≺ ΦtL ⊗ΦtR , . . . } | ΓtL⊗tR , Γ′1, xc : A, Γ′2 ⊢ x : As↔c

By the definition of merging on contexts, xct↔t′
: A[(t ≺ tL ⊠ tR/t′)] ∈ Γ′[(t ≺ tL ⊠ tR/t′)]

in the conclusion, and so we can use VAR-ROUNDTRIP to form

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ, Γ′1[(t ≺ tL ⊠ tR/t′)], xct↔t′
: A[(t ≺ tL ⊠ tR/t′)], Γ′2[(t ≺ tL ⊠ tR/t′)]

⊢ x : A[(t ≺ tL ⊠ tR/t′)]s
t↔t′↔ct↔t′

and this type is

A[(t ≺ tL ⊠ tR/t′)]s
t↔t′↔ct↔t′

≡ (A[(t ≺ tL ⊠ tR/t′)])s
t↔t′↔ct↔t′ ≡ As↔c[(t ≺ tL ⊠ tR/t′)]

by Lemma B.1.20 followed by Lemma B.1.19.

• VAR-ROUNDTRIP/PARTIAL:

– xc : A ∈ (ΓtL⊗tR)w: The derivation is

(s ≺ Ξ{(ΦtL ⊗ΦtR)w})c | ((Γ1
tL⊗tR)w)c ⊢ A type

s ≺ Ξ{(ΦtL ⊗ΦtR)w} | (Γ1
tL⊗tR)w, xc : A, (Γ2

tL⊗tR)w, Γ′ ⊢ x : A

Then c ∈ w, and so also c ∈ w[(t ≺ tL ⊠ tR/t′)] by Lemma B.2.37. Therefore the conclusion
context Γw[(t≺tL⊠tR/t′)] also contains xc : A. And so reapplying VAR-ROUNDTRIP gives

s ≺ Ξ{↓Φw[(t≺tL⊠tR/t′)]} | Γ1
w[(t≺tL⊠tR/t′)], xc : A, Γ2

w[(t≺tL⊠tR/t′)], Γ′[(t ≺ tL ⊠ tR/t′)]

⊢ x : Ast↔t′↔c

This type is equal to As↔c[(t ≺ tL ⊠ tR/t′)] by Lemma B.3.22.

– xc : A ∈ Γ′: The same reasoning as in the ordinary VAR-ROUNDTRIP case applies, because
the action of this rule on Γ′ is the same.
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• VAR-MARKED: As in mark-weakening, we must distinguish additional cases, for whether xc

is marked in the conclusion.

– xc ∈ ΓtL⊗tR and x unmarked in Γ: The derivation to consider is

c | Γ1
tL⊗tR ⊢ A type

s ≺ Ξ{t′ ≺ ΦtL ⊗ΦtR , . . . } | Γ1
tL⊗tR , xc : A, Γ2

tL⊗tR , Γ′ ⊢ x : As↔c

Because the context t ≺ Φ | Γ1, xc : A, Γ2 ctx is assumed to be well-formed, we know

Φc | Γ1
c ⊢ A type

Because c ∈ (t ≺ Φ), we also know (s ≺ Ξ{↓t ≺ Φ, . . . })c is a cartesian weakening of
Φc by Lemma B.2.36, and so we can weaken A to

(s ≺ Ξ{↓t ≺ Φ, . . . })c | Γ1
c ⊢ A type

and apply VAR-ROUNDTRIP giving

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ1, xc : A, Γ2, Γ′[(t ≺ tL ⊠ tR/t′)] ⊢ x : (AmΞ|Γ1)s↔c

And (AmΞ|Γ1)s↔c ≡ (AmΦ|Γ1)s↔c because A only contains colours from Φ.

– xc ∈ ΓtL⊗tR and x marked in Γ: Here the derivation to consider is

c | Γ1
tL⊗tR ⊢ A type

s ≺ Ξ{t′ ≺ ΦtL ⊗ΦtR , . . . } | (Γ1, xc : A, Γ2)
tL⊗tR , Γ′ ⊢ x : As↔c

By Lemma B.1.22, also c | Γ1 ⊢ A type, and so

s ≺ Ξ{↓t ≺ Φ, . . . } | Γ1, xc : A, Γ2, Γ′[(t ≺ tL ⊠ tR/t′)] ⊢ x : Ast↔t′↔c

is well formed. This type is equal to As↔c[(t ≺ tL ⊠ tR/t′)] by Lemma B.3.22, and that
c ̸≡ t′.

– xc ∈ Γ′: The derivation is

c | ΓtL⊗tR , Γ′1 ⊢ A type

s ≺ Ξ{t′ ≺ ΦtL ⊗ΦtR , . . . } | ΓtL⊗tR , Γ′1, xc : A, Γ′2 ⊢ x : As↔c

and by Lemma B.1.22, ΓtL⊗tR ≡ Γ and so

c | Γ, Γ′1 ⊢ A type

Applying Lemma B.3.25,

c | Γ, Γ′1[(t ≺ tL ⊠ tR/t′)] ⊢ A type

So VAR-MARKED gives

s ≺ Ξ | Γ, Γ′1[(t ≺ tL ⊠ tR/t′)], xc : A, Γ′2[(t ≺ tL ⊠ tR/t′)] ⊢ x : Ast↔t′↔c

This type is equal to As↔c[(t ≺ tL ⊠ tR/t′)] again by Lemma B.3.22.
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• VAR-MARKED/PARTIAL:

– xc : A ∈ (ΓtL⊗tR)w and x unmarked in Γw[(t≺tL⊠tR/t′)]: The derivation to consider is

c | (Γ1
tL⊗tR)w ⊢ A type

s ≺ Ξ{(ΦtL ⊗ΦtR)w} | (Γ1
tL⊗tR)w, xc : A, (Γ2

tL⊗tR)w, Γ′ ⊢ x : As↔c

By the definition of context filtering, x must also be unmarked in Γ. And so in as in the
VAR-MARKED case, the context t ≺ Φ | Γ1, xc : A, Γ2 ctx is assumed to be well-formed, so

Φc | Γ1
c ⊢ A type

For x to be unmarked in Γw[(t≺tL⊠tR/t′)], it must be the case that c ∈ w[(t ≺ tL ⊠ tR/t′)].
By Lemma B.2.36 we know (s ≺ Ξ{↓Φw[(t≺tL⊠tR/t′)]})c is a cartesian weakening of
(Φw[(t≺tL⊠tR/t′)])c which is itself equal to Φc by Lemma B.2.9. Also

Γ1
c ≡ (Γ1

w[(t≺tL⊠tR/t′)])c

because c is in w[(t ≺ tL ⊠ tR/t′)], so we have

(s ≺ Ξ{↓Φw[(t≺tL⊠tR/t′)]})c | (Γ1
w[(t≺tL⊠tR/t′)])c ⊢ A type

Applying VAR-ROUNDTRIP gives

s ≺ Ξ{↓Φw[(t≺tL⊠tR/t′)]} | Γ1
w[(t≺tL⊠tR/t′)], xc : A, Γ2

w[(t≺tL⊠tR/t′)], Γ′[(t ≺ tL ⊠ tR/t′)] ⊢ x : As↔c

the type of which is equal to As↔c[(t ≺ tL ⊠ tR/t′)] by Lemma B.3.22, and that s ̸≡ t′.

– xc : A ∈ (ΓtL⊗tR)w and x marked in Γw[(t≺tL⊠tR/t′)]: The derivation to consider is

c | (Γ1
tL⊗tR)w ⊢ A type

s ≺ Ξ{(ΦtL ⊗ΦtR)w} | (Γ1
tL⊗tR)w, xc : A, (Γ2

tL⊗tR)w, Γ′ ⊢ x : As↔c

We know

(Γ1
tL⊗tR)w ≡ Γ1

tL⊗tR ≡ Γ1 ≡ Γ1
w[(t≺tL⊠tR/t′)]

by applying Lemma B.1.22 thrice, so

c | Γ1
w[(t≺tL⊠tR/t′)] ⊢ A type

and so applying VAR-MARKED,

s ≺ Ξ{↓Φw[(t≺tL⊠tR/t′)]} | Γ1
w[(t≺tL⊠tR/t′)], xc : A, Γ2

w[(t≺tL⊠tR/t′)], Γ′[(t ≺ tL ⊠ tR/t′)]

⊢ x : As↔c
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– xc : A ∈ Γ′: The derivation is

c | (ΓtL⊗tR)w, Γ′1 ⊢ A type

s ≺ Ξ{t′ ≺ ΦtL ⊗ΦtR , . . . } | ΓtL⊗tR , Γ′1, xc : A, Γ′2 ⊢ x : As↔c

As in the previous case,

(ΓtL⊗tR)w ≡ Γw[(t≺tL⊠tR/t′)]

via Lemma B.1.22, so

c | Γw[(t≺tL⊠tR/t′)], Γ′1 ⊢ A type

Applying Lemma B.3.25, also

c | Γw[(t≺tL⊠tR/t′)], Γ′1[(t ≺ tL ⊠ tR/t′)] ⊢ A type

So VAR-MARKED gives

s ≺ Ξ{↓Φw[(t≺tL⊠tR/t′)]} | Γw[(t≺tL⊠tR/t′)], Γ′1[(t ≺ tL ⊠ tR/t′)], xc : A, Γ′2[(t ≺ tL ⊠ tR/t′)]

⊢ x : As↔c

• Π-FORM: The inputs are

(s ≺ Ξ){t′ ≺ ΦtL ⊗ΦtR , . . . } | ΓtL⊗tR , Γ′ ⊢ A type

(s ≺ Ξ){t′ ≺ ΦtL ⊗ΦtR , . . . } | Γ, Γ′, xs : A ⊢ B type

and inductively

(s ≺ Ξ{↓t ≺ Φ, . . . }) | Γ, Γ′[(t ≺ tL ⊠ tR/t′)]

⊢ A[(t ≺ tL ⊠ tR/t′)] type

(s ≺ Ξ{↓t ≺ Φ, . . . }) | Γ, Γ′[(t ≺ tL ⊠ tR/t′)], xst↔t′
: A[(t ≺ tL ⊠ tR/t′)]

⊢ B[(t ≺ tL ⊠ tR/t′)] type

and we can re-apply Π-FORM.

• ♮-FORM: The input type is

s | ΓtL⊗tR , Γ′ ⊢ A type

and A[(t ≺ tL ⊠ tR/t′)] ≡ At↔t′ by Lemma B.1.17.

Idempotence gives that Γ ≡ ΓtL⊗tR and by Lemma B.1.20,

Γ′[(t ≺ tL ⊠ tR/t′)] ≡ Γ′[(t ≺ tL ⊠ tR/t′)]

Therefore

st↔t′ | Γ, Γ′[(t ≺ tL ⊠ tR/t′)] ⊢ A[(t ≺ tL ⊠ tR/t′)] type

and we can reapply the rule.
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• ⊗-INTRO: First suppose we are not in the special case where one of the slices sL or sR used in
the term is exactly the top colour of tL or tR. Then we have inputs

s ≺ Ξ{(t′ ≺ ΦtL ⊗ΦtR , . . . )?} ⊢ sL ⊠ sR split

(s ≺ Ξ{(t′ ≺ ΦtL ⊗ΦtR , . . . )?})sL | (ΓtL⊗tR , Γ′)sL ⊢ a : A⌜sL⌝↔s

(s ≺ Ξ{(t′ ≺ ΦtL ⊗ΦtR , . . . )?})sR | (ΓtL⊗tR , Γ′)sR ⊢ b : B[as↔⌜sL⌝/xs]⌜sR⌝↔s

Applying MERGE/DISPATCH to each,

s ≺ Ξ{↓(t ≺ Φ)?[(t≺tL⊠tR/t′)]} ⊢ sL[(t ≺ tL ⊠ tR/t′)]⊠ sR[(t ≺ tL ⊠ tR/t′)] split

(s ≺ Ξ{↓(t ≺ Φ)?[(t≺tL⊠tR/t′)]})sL[(t≺tL⊠tR/t′)]

| (Γ, Γ′[(t ≺ tL ⊠ tR/t′)])sL[(t≺tL⊠tR/t′)]

⊢ a[(t ≺ tL ⊠ tR/t′)] : A⌜sL⌝↔s[(t ≺ tL ⊠ tR/t′)]

(s ≺ Ξ{↓(t ≺ Φ)?[(t≺tL⊠tR/t′)]})sR[(t≺tL⊠tR/t′)]

| (Γ, Γ′[(t ≺ tL ⊠ tR/t′)])sR[(t≺tL⊠tR/t′)]

⊢ b[(t ≺ tL ⊠ tR/t′)] : B[as↔⌜sL⌝/xs]⌜sR⌝↔s[(t ≺ tL ⊠ tR/t′)]

and so we just have to check that those types are correct. For A,

A⌜sL⌝↔s[(t ≺ tL ⊠ tR/t′)]

≡ (A[(t ≺ tL ⊠ tR/t′)])⌜sL⌝
t↔t′↔st↔t′

≡ (A[(t ≺ tL ⊠ tR/t′)])⌜sL[(t≺tL⊠tR/t′)]⌝↔⌜s[(t≺tL⊠tR/t′)]⌝

by Lemma B.1.19. For B, and letting [(. . . )] stand in for [(t ≺ tL ⊠ tR/t′)],

B[as↔⌜sL⌝/xs]⌜sR⌝↔s[(. . . )]

≡ (B[as↔⌜sL⌝/xs][(. . . )])⌜sR[(... )]⌝↔⌜s[(... )]⌝

(Lemma B.1.5)

≡ (B[(. . . )][as↔⌜sL⌝[(. . . )]/xs])⌜sR[(... )]⌝↔⌜s[(... )]⌝

(Lemma B.1.2)

≡ (B[(. . . )][(a[(. . . )])⌜s[(... )]⌝↔⌜sL[(... )]⌝/xs])⌜sR[(... )]⌝↔⌜s[(... )]⌝

(Lemma B.1.5)

And so a[(t ≺ tL ⊠ tR/t′)] and b[(t ≺ tL ⊠ tR/t′)] have the correct types to re-apply ⊗-INTRO:

s ≺ Ξ{↓(t ≺ Φ)?[(t≺tL⊠tR/t′)]}
| Γ, Γ′[(t ≺ tL ⊠ tR/t′)]

⊢ a[(t ≺ tL ⊠ tR/t′)] ⊗sL[(t≺tL⊠tR/t′)] sR[(t≺tL⊠tR/t′)] b[(t ≺ tL ⊠ tR/t′)]

:⃝∑ (x:A[(t≺tL⊠tR/t′)])B[(t ≺ tL ⊠ tR/t′)]
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Now consider the special case that sL ≡ ⌜tL⌝.

s ≺ Ξ{(t′ ≺ ΦtL ⊗ΦtR , . . . )?} ⊢ ⌜tL⌝ ⊠ sR split

(s ≺ Ξ{(t′ ≺ ΦtL ⊗ΦtR , . . . )?})⌜tL⌝ | (ΓtL⊗tR , Γ′)⌜tL⌝ ⊢ a : A⌜tL⌝↔s

(s ≺ Ξ{(t′ ≺ ΦtL ⊗ΦtR , . . . )?})sR | (ΓtL⊗tR , Γ′)sR ⊢ b : B[as↔⌜tL⌝/xs]⌜sR⌝↔s

But now

ΦtL | ΓtL , Γ′ ⊢ a : A⌜tL⌝↔s

because (s ≺ Ξ{(t′ ≺ ΦtL ⊗ΦtR , . . . )?})⌜tL⌝ ≡ ΦtL , and Γ′ does not use colours from Φ. This
term is already of the required form to re-apply the ⊗ rule together with b[(t ≺ tL ⊠ tR/t′)],
because

ΦtL ≡ (s ≺ Ξ{↓(t ≺ Φ)?[(t≺tL⊠tR/t′)]})⌜tL⌝[(t≺tL⊠tR/t′)]

and
Γ′ ≡ Γ′[(t ≺ tL ⊠ tR/t′)])sL[(t≺tL⊠tR/t′)]

There are three other cases: tL ≡ ⌜sR⌝, tR ≡ ⌜sL⌝ and tR ≡ ⌜sR⌝, but they are all similar.

• ⊸-FORM: The inputs are

r | Γ, Γ′ ⊢ A type

p ≺ (s ≺ Ξ){(t′ ≺ ΦtL ⊗ΦtR)?} ⊗ r | ΓsL⊗sR , Γ′, xr : A ⊢ B type

By Lemma B.3.22 on A and induction on B,

r | Γ, Γ′[(t ≺ tL ⊠ tR/t′)] ⊢ A[(t ≺ tL ⊠ tR/t′)] type

p ≺ (s ≺ Ξ{↓(t ≺ Φ)?[(t≺tL⊠tR/t′)]})⊗ r | Γ, Γ′[(t ≺ tL ⊠ tR/t′)], xr : A[(t ≺ tL ⊠ tR/t′)]

⊢ B[(t ≺ tL ⊠ tR/t′)] type

and these are of the right shape to reapply the rule.

• ⊸-ELIM: As in the case for ⊗-INTRO, first suppose we are not in the special case where one
of the slices sL or sR used in the term is exactly the top colour of tL or tR. Then we have inputs

s ≺ Ξ{(t′ ≺ ΦtL ⊗ΦtR , . . . )?} ⊢ sL ⊠ sR split

(s ≺ Ξ{(t′ ≺ ΦtL ⊗ΦtR , . . . )?})sL | (ΓtL⊗tR , Γ′)sL ⊢ f :⃝∏ (xr :A)
pB

(s ≺ Ξ{(t′ ≺ ΦtL ⊗ΦtR , . . . )?})sR | (ΓtL⊗tR , Γ′)sR ⊢ a : A

Then applying MERGE/DISPATCH,

s ≺ Ξ{↓(t ≺ Φ)?[(t≺tL⊠tR/t′)]} ⊢ sL[(t ≺ tL ⊠ tR/t′)]⊠ sR[(t ≺ tL ⊠ tR/t′)] split

(s ≺ Ξ{↓(t ≺ Φ)?[(t≺tL⊠tR/t′)]})sL[(t≺tL⊠tR/t′)] | (Γ, Γ′[(t ≺ tL ⊠ tR/t′)])sL[(t≺tL⊠tR/t′)]

⊢ f [(t ≺ tL ⊠ tR/t′)] :
(
⃝∏ (xr :A)

pB
)
[(t ≺ tL ⊠ tR/t′)]

(s ≺ Ξ{↓(t ≺ Φ)?[(t≺tL⊠tR/t′)]})sR[(t≺tL⊠tR/t′)] | (Γ, Γ′[(t ≺ tL ⊠ tR/t′)])sR[(t≺tL⊠tR/t′)]

⊢ a[(t ≺ tL ⊠ tR/t′)] : A[(t ≺ tL ⊠ tR/t′)]
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By definition,(
⃝∏ (xr :A)

pB
)
[(t ≺ tL ⊠ tR/t′)] ≡ ⃝∏ (xr :A[(t≺tL⊠tR/t′)])

pB[(t ≺ tL ⊠ tR/t′)]

and so reapplying the rule gives:

s ≺ Ξ{↓(t ≺ Φ)?[(t≺tL⊠tR/t′)]}
| Γ, Γ′[(t ≺ tL ⊠ tR/t′)]

⊢ f [(t ≺ tL ⊠ tR/t′)]⟨a[(t ≺ tL ⊠ tR/t′)]⟩
: B[(t ≺ tL ⊠ tR/t′)][a[(t ≺ tL ⊠ tR/t′)]/x][(s ≺ sL[(t ≺ tL ⊠ tR/t′)]⊠ sR[(t ≺ tL ⊠ tR/t′)]/p)]

This type is correct, by Lemma B.1.7 and Lemma B.1.16.

Lemma B.3.25.

Φ | Γ, Γ′[(t ≺ sL ⊠ sR/t′)] ⊢ J

Φ | Γ, Γ′ ⊢ J
−−−−−−−−−−−−−−−

Proof. Repeated application of Lemma B.3.6, together with Lemma B.1.20.
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